scholarly journals Polarization as a probe of dusty environments around Type Ia supernovae: radiative transfer models for SN 2012dn

2018 ◽  
Vol 476 (4) ◽  
pp. 4806-4813 ◽  
Author(s):  
Takashi Nagao ◽  
Keiichi Maeda ◽  
Masayuki Yamanaka
2019 ◽  
Vol 492 (2) ◽  
pp. 2029-2043 ◽  
Author(s):  
L J Shingles ◽  
S A Sim ◽  
M Kromer ◽  
K Maguire ◽  
M Bulla ◽  
...  

ABSTRACT We extend the range of validity of the artis 3D radiative transfer code up to hundreds of days after explosion, when Type Ia supernovae (SNe Ia) are in their nebular phase. To achieve this, we add a non-local thermodynamic equilibrium population and ionization solver, a new multifrequency radiation field model, and a new atomic data set with forbidden transitions. We treat collisions with non-thermal leptons resulting from nuclear decays to account for their contribution to excitation, ionization, and heating. We validate our method with a variety of tests including comparing our synthetic nebular spectra for the well-known one-dimensional W7 model with the results of other studies. As an illustrative application of the code, we present synthetic nebular spectra for the detonation of a sub-Chandrasekhar white dwarf (WD) in which the possible effects of gravitational settling of 22Ne prior to explosion have been explored. Specifically, we compare synthetic nebular spectra for a 1.06 M⊙ WD model obtained when 5.5 Gyr of very efficient settling is assumed to a similar model without settling. We find that this degree of 22Ne settling has only a modest effect on the resulting nebular spectra due to increased 58Ni abundance. Due to the high ionization in sub-Chandrasekhar models, the nebular [Ni ii] emission remains negligible, while the [Ni iii] line strengths are increased and the overall ionization balance is slightly lowered in the model with 22Ne settling. In common with previous studies of sub-Chandrasekhar models at nebular epochs, these models overproduce [Fe iii] emission relative to [Fe ii] in comparison to observations of normal SNe Ia.


2020 ◽  
Vol 494 (2) ◽  
pp. 2221-2235 ◽  
Author(s):  
Kevin D Wilk ◽  
D John Hillier ◽  
Luc Dessart

ABSTRACT In this study, we present one-dimensional, non-local-thermodynamic-equilibrium, radiative transfer simulations (using cmfgen) in which we introduce micro-clumping at nebular times into two Type Ia supernova ejecta models. We use one sub-Chandrasekhar (sub-MCh) ejecta model with 1.04 M⊙ and one Chandrasekhar (MCh) ejecta model with 1.40 M⊙. We introduce clumping factors f = 0.33, 0.25, and 0.10, which are constant throughout the ejecta, and compare results to the unclumped f = 1.0 case. We find that clumping is a natural mechanism to reduce the ionization of the ejecta, reducing emission from [Fe iii], [Ar iii], and [S iii] by a factor of a few. For decreasing values of the clumping factor f, the [Ca ii] λλ7291,7324 doublet became a dominant cooling line for our MCh model but remained weak in our sub-MCh model. Strong [Ca ii] λλ7291,7324 indicates non-thermal heating in that region and may constrain explosion modelling. Due to the low abundance of stable nickel, our sub-MCh model never showed the [Ni ii] 1.939-μm diagnostic feature for all clumping values.


2020 ◽  
Vol 494 (4) ◽  
pp. 5811-5824
Author(s):  
Ran Livneh ◽  
Boaz Katz

ABSTRACT Near maximum brightness, the spectra of Type Ia supernovae (SNe Ia) present typical absorption features of Silicon II observed at roughly $6100$ and $5750\, \mathring{\rm A}$. The two-dimensional distribution of the pseudo-equivalent widths (pEWs) of these features is a useful tool for classifying SNe Ia spectra (Branch plot). Comparing the observed distribution of SNe on the Branch plot to results of simulated explosion models, we find that one-dimensional models fail to cover most of the distribution. In contrast, we find that tardis radiative transfer simulations of the white dwarf head-on collision models along different lines of sight almost fully cover the distribution. We use several simplified approaches to explain this result. We perform order-of-magnitude analysis and model the opacity of the Si ii lines using local thermodynamic equilibrium and non-local thermodynamic equilibrium approximations. Introducing a simple toy model of spectral feature formation, we show that the pEW is a good tracer for the extent of the absorption region in the ejecta. Using radiative transfer simulations of synthetic SN ejecta, we reproduce the observed Branch plot distribution by varying the luminosity of the SN and the Si density profile of the ejecta. We deduce that the success of the collision model in covering the Branch plot is a result of its asymmetry, which allows for a significant range of Si density profiles along different viewing angles, uncorrelated with a range of 56Ni yields that cover the observed range of SN Ia luminosity. We use our results to explain the shape and boundaries of the Branch plot distribution.


2021 ◽  
Vol 922 (1) ◽  
pp. 68
Author(s):  
Ken J. Shen ◽  
Samuel J. Boos ◽  
Dean M. Townsley ◽  
Daniel Kasen

Abstract Study of the double-detonation Type Ia supernova scenario, in which a helium-shell detonation triggers a carbon-core detonation in a sub-Chandrasekhar-mass white dwarf (WD), has experienced a resurgence in the past decade. New evolutionary scenarios and a better understanding of which nuclear reactions are essential have allowed for successful explosions in WDs with much thinner helium shells than in the original, decades-old incarnation of the double-detonation scenario. In this paper, we present the first suite of light curves and spectra from multidimensional radiative transfer calculations of thin-shell double-detonation models, exploring a range of WD and helium-shell masses. We find broad agreement with the observed light curves and spectra of nonpeculiar Type Ia supernovae, from subluminous to overluminous subtypes, providing evidence that double detonations of sub-Chandrasekhar-mass WDs produce the bulk of observed Type Ia supernovae. Some discrepancies in spectral velocities and colors persist, but these may be brought into agreement by future calculations that include more accurate initial conditions and radiation transport physics.


1998 ◽  
Vol 492 (1) ◽  
pp. 228-245 ◽  
Author(s):  
P. Hoflich ◽  
J. C. Wheeler ◽  
A. Khokhlov

Sign in / Sign up

Export Citation Format

Share Document