thermodynamic equilibrium
Recently Published Documents


TOTAL DOCUMENTS

1346
(FIVE YEARS 204)

H-INDEX

58
(FIVE YEARS 7)

2022 ◽  
Vol 48 ◽  
pp. 103562
Author(s):  
Larysa Okhrimenko ◽  
Julie Dussouillez ◽  
Kévyn Johannes ◽  
Frédéric Kuznik

2022 ◽  
Vol 92 (2) ◽  
pp. 242
Author(s):  
С.А. Гриднев ◽  
Ю.Е. Калинин

High-temperature internal friction in an amorphous CuTi alloy is investigated. Exponential regions with different activation energies are observed on the dependence of internal friction on temperature on both sides of the glass transition temperature. An exponential increase in the background of internal friction with temperature in both sites is associated with the migration of vacancy-like defects in the amorphous structure under the influence of mechanical stresses, while frozen defects of constant concentration migrate to the glass transition temperature. After the transition to a state of thermodynamic equilibrium , the concentration the number of migrating defects increases exponentially. Based on the experimental results of measuring the high-temperature background, estimates of the activation energy of migration and the formation of vacancies of similar defects in the amorphous structure of the alloy under study are made.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 131
Author(s):  
Facun Jiao ◽  
Xulong Ma ◽  
Tao Liu ◽  
Chengli Wu ◽  
Hanxu Li ◽  
...  

The vaporization behaviors of eight heavy metals (Pb, Zn, Cu, Cd, Cr, Co, Mn, and Ni) in municipal solid wastes incineration (MSWI) fly ash during thermal treatment under air atmosphere (21% O2/79% N2), an inert atmosphere (100% N2), and a reducing atmosphere (50% CO/50% N2) were evaluated based on a thermodynamic equilibrium calculation by FactSage 8.1. The results show that the reducing atmosphere promotes the melting of MSWI fly ash, resulting in a more liquid phase than in air or an inert atmosphere. Except for Cd, the formation of liquids can dissolve heavy metals and reduce their vaporization ratio. In the air and inert atmospheres, Pb, Zn, Cu, Co, Mn, and Ni vaporize mainly in the form of metallic chlorides, while Cd volatilizes in the form of metallic Cd (g) and CdO (g). In the reducing atmosphere, Co, Mn, and Ni still vaporize as chlorides. Zn and Cd mainly vaporize in the form of Zn (g) and Cd (g), respectively. In terms of Pb, in addition to its chlorides, the volatiles of Pb contain some Pb (g) and PbS (g). Cr has a low vaporization ratio, accounting for 2.4% of the air atmosphere. Cr, on the other hand, readily reacts with Ca to form water-soluble CrCaO4, potentially increasing Cr leaching. Except for Cd, the results of this study suggest that the reducing atmosphere is used for the thermal treatment of MSWI fly ash because it promotes the melting of fly ash and thus prevents heavy metal vaporization.


2021 ◽  
pp. 1-14
Author(s):  
Kamila Závacká ◽  
Vilém Neděla ◽  
Eva Tihlaříková ◽  
Pavla Šabacká ◽  
Jiří Maxa ◽  
...  

Abstract Frozen aqueous solutions are an important subject of study in numerous scientific branches including the pharmaceutical and food industry, atmospheric chemistry, biology, and medicine. Here, we present an advanced environmental scanning electron microscope methodology for research of ice samples at environmentally relevant subzero temperatures, thus under conditions in which it is extremely challenging to maintain the thermodynamic equilibrium of the specimen. The methodology opens possibilities to observe intact ice samples at close to natural conditions. Based on the results of ANSYS software simulations of the surface temperature of a frozen sample, and knowledge of the partial pressure of water vapor in the gas mixture near the sample, we monitored static ice samples over several minutes. We also discuss possible artifacts that can arise from unwanted surface ice formation on, or ice sublimation from, the sample, as a consequence of shifting conditions away from thermodynamic equilibrium in the specimen chamber. To demonstrate the applicability of the methodology, we characterized how the true morphology of ice spheres containing salt changed upon aging and the morphology of ice spheres containing bovine serum albumin. After combining static observations with the dynamic process of ice sublimation from the sample, we can attain images with nanometer resolution.


2021 ◽  
Vol 29 (4) ◽  
pp. 92-98
Author(s):  
O.M. Smirnov ◽  
◽  
A.S. Petryshchev ◽  
S.V. Semyriahyn ◽  
Yu.O. Smirnov ◽  
...  

2021 ◽  
pp. 105-116
Author(s):  
John H. S. Lee ◽  
K. Ramamurthi

Sign in / Sign up

Export Citation Format

Share Document