atomic data
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 74)

H-INDEX

52
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Bao-Ling Shi ◽  
Yi Qin ◽  
Xiang-Fu Li ◽  
Bang-Lin Deng ◽  
Gang Jiang ◽  
...  

Abstract Atomic data of highly charged ions (HCIs) offer an attractive means for plasma diagnostic and stars identification, and the investigations on atomic data are highly desirable. Herein, based on the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, we have performed calculations of the fine structure energy levels, wavelengths, transition rates, oscillator strengths, and line strengths for the lowest 21 states of 3p63d8 - 3p53d9 electric dipole (E1) transitions configurations in Fe-like ions (Z = 57, 60, 62, 64, 65). The correlation effects of valence-valence (VV) and core-valence (CV) electrons were systematically considered. In addition, we have taken into account transverse-photon (Breit) interaction and quantum electrodynamics (QED) corrections to treat accurately the atomic state wave functions in the final relativistic configuration interaction (RCI) calculations. Our calculated energy levels and transition wavelengths are in excellent agreement with the available experimental and theoretical results. Most importantly, we predicted some new transition parameters that have not yet been reported. These data would further provide critical insights into better analyzing the physical processes of various astrophysical plasmas.


2021 ◽  
Author(s):  
Xian-Ming Zhou ◽  
Jing Wei ◽  
Rui Cheng ◽  
Yan-Hong Chen ◽  
Ce-Xiang Mei ◽  
...  

Abstract The L-shell x ray of Nd has been obtained for 300 - 600 keV He2 + ions impacting, and compared with that produced by H+ and H2 + ions. The threshold of projectile kinetic energy for L-shell ionization of Nd is crudely verified in the energy region of about 300 - 400 keV. It is found that the energy of the distinct L-subshell x rays has a blue shift. The relative intensity ratios of Lβ1, 3, 4 and Lβ2, 15 to Lα1, 2 x-ray are enlarged compared to the atomic data, and they decrease with the increase of incident energy, and increase with increasing effective nuclear charge of the incident ions. That is interpreted by the multiple ionization of outer-shells induced by light ions.


2021 ◽  
Vol 257 (2) ◽  
pp. 56
Author(s):  
X. H. Zhang ◽  
G. Del Zanna ◽  
K. Wang ◽  
P. Rynkun ◽  
P. Jönsson ◽  
...  

Abstract The multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction methods are used to provide excitation energies, lifetimes, and radiative transition data for the 604 (699, 702, 704, 704, 704, and 699) lowest levels of the 3s 23p 2, 3s3p 3, 3s 23p3d, 3p 4, 3s3p 23d, 3s 23d 2, 3p 33d, 3s3p3d 2, 3s3d 3, 3p3d 3, 3p 23d 2, 3s 23p4s, 3s 23p4p, 3s 23p4d, 3s 23p4f, 3s3p 24s, 3s3p 24p, 3s3p 24d, 3s3p 24f, 3s 23d4s, 3s 23d4p, 3p 34s, 3p 34p, 3s3p3d4s, 3s 23p5s, and 3s 23p5p configurations in Cr xi, (Mn xii, Fe xiii, Co xiv, Ni xv, Cu xvi, and Zn xvii). Previous line identifications of Fe xiii and Ni xv in the EUV and X-ray wavelength ranges are reviewed by comprehensively comparing the MCDHF theoretical results with available experimental data. Many recent identifications of Fe xiii and Ni xv lines are confirmed, and several new identifications for these two ions are proposed. A consistent atomic data set with spectroscopic accuracy is provided for the lowest hundreds of levels for Si-like ions of iron-group elements of astrophysical interest, for which experimental values are scarce. The uncertainty estimation method suggested by Kramida, applied to the comparison of the length and velocity line strength values, is used for ranking the transition data. The correlation of the latter with the gauge dependency patterns of the line strengths is investigated.


Author(s):  
Leticia Juan de Dios ◽  
Mónica Rodríguez

Abstract We study the density structures of planetary nebulae implied by four diagnostics that sample different regions within the nebulae: [S ii] λ6716/λ6731, [O ii] λ3726/λ3729, [Cl iii] λ5518/λ5538, and [Ar iv] λ4711/λ4740. We use a sample of 46 objects with deep spectra that allow the calculation of the electron density from these four diagnostics, and explore the impact that different atomic data have on the results. We compare the observational results with those obtained from photoionization models characterized by three different density structures. We conclude that the atomic data used in the calculations of electron density fully determine the density structures that are derived for the objects. We illustrate this by selecting three combinations of atomic data that lead to observational results that are compatible with each of the three different density structures explored with the models.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Nagaaki Kambara ◽  
Tomoko Kawate ◽  
Tetsutarou Oishi ◽  
Yasuko Kawamoto ◽  
Hiroyuki A. Sakaue ◽  
...  

The intensity ratio of Fe XIV 264.765A/274.203A is useful to determine the electron density of solar corona, and the relationship between the electron density and the intensity ratio obtained from a model should be evaluated using laboratory plasmas to estimate the electron density more precisely. We constructed a new collisional–radiative model (CR-model) for Fe XIV (an Al-like iron ion) by considering the processes of proton-impact excitation and electron-impact ionization to the excited states of a Mg-like iron ion. The atomic data used in the CR-model were calculated using the HULLAC atomic code. The model was evaluated based on laboratory experiments using a compact electron beam ion trap, called CoBIT, and the Large Helical Device (LHD). The measured Fe XIV 264.785 Å/274.203 Å line intensity ratio with CoBIT was 1.869 ± 0.036, and it agreed well with our CR-model results. Concurrently, the measured ratio using LHD was larger than the results of our CR-model and CHIANTI. The estimated electron densities using our CR-model agreed with those from CHIANTI within a factor of 1.6–2.4 in the range of ne≈1010−11cm−3. Further model development is needed to explain the ratio in a high-electron density region.


Author(s):  
Ravinder Kumar ◽  
Narendra Singh ◽  
Arun Goyal

In this work, the atomic parameters of Ag XLIV are examined and evaluated by implementing GRASP2K package with Multi-Configuration Dirac-Hartree-Fock (MCDHF) method for the calculation of wave-functions. We have listed fine structure energy levels of the lowest 170 levels with radiative data for multipole moments such as electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions lie under the region of Extreme Ultraviolet (EUV) and Soft X-ray (SXR) for Ag XLIV from the ground state within the lowest 170 levels. We have compared our results GRASP2K and FAC results with theoretical results available in literature for some levels. Additionally, we have also calculated partition function and thermodynamic quantities for temperature ranges from 104K to 107K. We believe that our presented details and data may be beneficial not only in plasma modeling but also in imaging of nanostructure as well as in medicine, semiconductors and EUV and SXR laser applications.


2021 ◽  
pp. 101010
Author(s):  
K.D. Lawson ◽  
M. Groth ◽  
D. Harting ◽  
S. Menmuir ◽  
K.M. Aggarwal ◽  
...  
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 621
Author(s):  
Charles Cheung ◽  
Marianna Safronova ◽  
Sergey Porsev

High precision atomic data are indispensable for studies of fundamental symmetries, tests of fundamental physics postulates, developments of atomic clocks, ultracold atom experiments, astrophysics, plasma science, and many other fields of research. We have developed a new parallel atomic structure code package that enables computations that were not previously possible due to system complexity. This code package also allows much quicker computations to be run with higher accuracy for simple systems. We explored different methods of load-balancing matrix element calculations for many-electron systems, which are very difficult due to the intrinsic nature of the computational methods used to calculate them. Furthermore, dynamic memory allocation and MPI parallelization have been implemented to optimize and accelerate the computations. We have achieved near-perfect linear scalability and efficiency with the number of processors used for calculation, paving the way towards the future where most open-shell systems will finally be able to be treated with good accuracy. We present several examples illustrating new capabilities of the newly developed codes, specifically correlating up to all 60 electrons in the highly charged Ir17+ ion and predicting certain properties of Fe16+.


2021 ◽  
Vol 502 (3) ◽  
pp. 3780-3799
Author(s):  
W Li ◽  
A M Amarsi ◽  
A Papoulia ◽  
J Ekman ◽  
P Jönsson

ABSTRACT Accurate atomic data are essential for opacity calculations and for abundance analyses of the Sun and other stars. The aim of this work is to provide accurate and extensive results of energy levels and transition data for C i–iv. The Multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods were used in this work. To improve the quality of the wavefunctions and reduce the relative differences between length and velocity forms for transition data involving high Rydberg states, alternative computational strategies were employed by imposing restrictions on the electron substitutions when constructing the orbital basis for each atom and ion. Transition data, for example, weighted oscillator strengths and transition probabilities, are given for radiative electric dipole (E1) transitions involving levels up to 1s22s22p6s for C i, up to 1s22s27f for C ii, up to 1s22s7f for C iii, and up to 1s28g for C iv. Using the difference between the transition rates in length and velocity gauges as an internal validation, the average uncertainties of all presented E1 transitions are estimated to be 8.05 per cent, 7.20 per cent, 1.77 per cent, and 0.28 per cent, respectively, for C i–iv. Extensive comparisons with available experimental and theoretical results are performed and good agreement is observed for most of the transitions. In addition, the C i data were employed in a re-analysis of the solar carbon abundance. The new transition data give a line-by-line dispersion similar to the one obtained when using transition data that are typically used in stellar spectroscopic applications today.


Sign in / Sign up

Export Citation Format

Share Document