scholarly journals Quantifying the power spectrum of small-scale structure in semi-analytic galaxies

2019 ◽  
Vol 488 (4) ◽  
pp. 5085-5092 ◽  
Author(s):  
Sean Brennan ◽  
Andrew J Benson ◽  
Francis-Yan Cyr-Racine ◽  
Charles R Keeton ◽  
Leonidas A Moustakas ◽  
...  

Abstract In the cold dark matter (CDM) picture of structure formation, galaxy mass distributions are predicted to have a considerable amount of structure on small scales. Strong gravitational lensing has proven to be a useful tool for studying this small-scale structure. Much of the attention has been given to detecting individual dark matter subhaloes through lens modelling, but recent work has suggested that the full population of subhaloes could be probed using a power spectrum analysis. In this paper, we quantify the power spectrum of small-scale structure in simulated galaxies, with the goal of understanding theoretical predictions and setting the stage for using measurements of the power spectrum to test dark matter models. We use a sample of simulated galaxies generated from the galacticus semi-analytic model to determine the power spectrum distribution first in the CDM paradigm and then in a warm dark matter scenario. We find that a measurement of the slope and amplitude of the power spectrum on galaxy strong lensing scales (k ∼ 1 kpc−1) could be used to distinguish between CDM and alternate dark matter models, especially if the most massive subhaloes can be directly detected via gravitational imaging.


2000 ◽  
Vol 87 (1-3) ◽  
pp. 93-95 ◽  
Author(s):  
Dominik J. Schwarz ◽  
Stefan Hofmann




2020 ◽  
Vol 124 (4) ◽  
Author(s):  
Xiaoyong Chu ◽  
Camilo Garcia-Cely ◽  
Hitoshi Murayama


1996 ◽  
Vol 466 ◽  
pp. 13 ◽  
Author(s):  
Anatoly Klypin ◽  
Joel Primack ◽  
Jon Holtzman


2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.



1985 ◽  
Vol 106 ◽  
pp. 321-322
Author(s):  
J. Crovisier ◽  
J. M. Dickey

The small-scale structure of galactic neutral hydrogen may be statistically described by the spatial power spectrum of the 21-cm line. This latter may be readily observed by interferometer arrays since it is the squared modulus of the visibility function. We have observed the , region with the Westerbork Synthesis Radio Telescope (Crovisier and Dickey, 1983). Brightness fluctuations of the 21-cm line were detected in this region on scales as small as 1.7 arcmin (corresponding to less than 5 pc). The Westerbork observations, combined with single-dish observations made at Nançay and Arecibo, allow determination of the spatial power spectrum over a dynamic range of about 106 in intensity. The spectrum follows roughly a power law with indices ~ −3 to −2. An interpretation in terms of the turbulence spectrum is proposed by Dickey (1985).





2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Francesca Borzumati ◽  
Torsten Bringmann ◽  
Piero Ullio




Sign in / Sign up

Export Citation Format

Share Document