scholarly journals Effects of infall and outflow on massive star-forming regions

2019 ◽  
Vol 488 (4) ◽  
pp. 4638-4647 ◽  
Author(s):  
Qiang Li ◽  
Jianjun Zhou ◽  
Jarken Esimbek ◽  
Yuxin He ◽  
Willem Baan ◽  
...  

ABSTRACT A total of 188 high-mass outflows have been identified from a sample of 694 clumps from the Millimetre Astronomy Legacy Team 90 GHz survey, representing a detection rate of approximately 27 per cent. The detection rate of outflows increases from the proto-stellar stage to the H ii stage, but decreases again at the photodissociation (PDR) stage suggesting that outflows are being switched off during the PDR stage. An intimate relationship is found between outflow action and the presence of masers, and water masers appear together with 6.7 GHz methanol masers. Comparing the infall detection rate of clumps with and without outflows, we find that outflow candidates have a lower infall detection rate. Finally, we find that outflow action has some influence on the local environment and the clump itself, and this influence decreases with increasing evolutionary time as the outflow action ceases.

2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2012 ◽  
Vol 8 (S287) ◽  
pp. 184-185
Author(s):  
Florian Niederhofer ◽  
Elizabeth Humphreys ◽  
Ciriaco Goddi ◽  
Lincoln J. Greenhill

AbstractRadio Source I in the Orion BN/KL region provides the closest example of high mass star formation. It powers a rich ensemble of SiO and H2O masers, and is one of only three star-forming regions known to display SiO maser emission. Previous monitoring of different SiO masers with the VLBA and VLA has enabled the resolution of a compact disk and a protostellar wind at radii <100 AU from Source I, which collimates into a bipolar outflow at radii of 100-1000 AU (see contribution by Greenhill et al., this volume). Source I may provide the best case of disk-mediated accretion and outflow recollimation in massive star formation. Here, we report preliminary results of sub-arcsecond resolution 325 GHz H2O maser observations made with the SMA. We find that 325 GHz H2O masers trace a more collimated portion of the Source I outflow than masers at 22 GHz, but occur at similar radii suggesting similar excitation conditions. A velocity gradient perpendicular to the outflow axis, indicating rotation, supports magneto-centrifugal driving of the flow.


2002 ◽  
Vol 206 ◽  
pp. 147-150
Author(s):  
Vincent Minier ◽  
Roy Booth ◽  
John Conway ◽  
Michele Pestalozzi

We summarise our recent VLBI observations of a large sample of methanol maser sources associated with high-mass star-forming regions.


2017 ◽  
Vol 13 (S336) ◽  
pp. 323-324
Author(s):  
Sonu Tabitha Paulson ◽  
Jagadheep D. Pandian

AbstractMethanol masers at 6.7 GHz are the brightest of class II methanol masers and have been found exclusively towards massive star forming regions. These masers can thus be used as a unique tool to probe the early phases of massive star formation. We present here the SED studies of 284 methanol masers chosen from the MMB catalogue, which falls in the Hi-GAL range (|l| ≤ 60°, |b| ≤ 1°). The masers are studied using the ATLASGAL, MIPSGAL and Hi-GAL data at wavelengths ranging from 24−870 micrometers. A single grey body component fit was used to model the cold dust emission whereas the emission from the warm dust is modelled by a black body. The clump properties such as isothermal mass, FIR luminosity and MIR luminosity were obtained using the best fit parameters of the SED fits. We discuss the physical properties of the sources and explore the evolutionary stages of the sources having 6.7 GHz maser emission in the timeline of high mass star formation.


2017 ◽  
Vol 233 (1) ◽  
pp. 4 ◽  
Author(s):  
C. B. Rodríguez-Garza ◽  
S. E. Kurtz ◽  
A. I. Gómez-Ruiz ◽  
P. Hofner ◽  
E. D. Araya ◽  
...  

2007 ◽  
Vol 3 (S242) ◽  
pp. 152-153
Author(s):  
C. Goddi ◽  
L. Moscadelli ◽  
A. Sanna ◽  
R. Cesaroni ◽  
V. Minier

AbstractWe have conducted phase-reference VLBI observations of H2O and CH3OH masers toward two high-mass star forming regions, Sh 2-255 IR and AFGL 5142. In Sh 2-255 infrared water masers are aligned along a direction close to the orientation of a large scale H2 jet, tracing possibly shocked material in a precessing jet, or, alternatively, the disk-wind emerging from the disk atmosphere. In AFGL 5142 water masers trace expansion at the base of a protostellar jet, whilst methanol masers are more probably tracing infalling than outflowing gas. Our results suggest that water and methanol masers trace different kinematic structures in the circumstellar gas.


2010 ◽  
Vol 517 ◽  
pp. A56 ◽  
Author(s):  
F. Fontani ◽  
R. Cesaroni ◽  
R. S. Furuya

2020 ◽  
Vol 496 (3) ◽  
pp. 2790-2820 ◽  
Author(s):  
Tie Liu ◽  
Neal J Evans ◽  
Kee-Tae Kim ◽  
Paul F Goldsmith ◽  
Sheng-Yuan Liu ◽  
...  

ABSTRACT The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over ∼1 pc), which may be caused by slow shocks from large–scale colliding flows or H ii regions. Stellar feedback from an expanding H ii region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analysed with other survey data, e.g. MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of ‘dense gas’ star formation scaling relations and massive protocluster formation.


2012 ◽  
Vol 8 (S287) ◽  
pp. 108-109
Author(s):  
Jabulani P. Maswanganye ◽  
Michael J. Gaylard

AbstractThe methanol masers associated with G35.20-1.74 were monitored at 12178 MHz for four years and 6668 MHz for five years using the 26m Hartebeesthoek telescope. This source showed irregular variability and a single large flare event during the monitoring window.


Sign in / Sign up

Export Citation Format

Share Document