scholarly journals Jet Propagation in Neutron Star Mergers and GW170817

Author(s):  
Hamid Hamidani ◽  
Kenta Kiuchi ◽  
Kunihito Ioka

Abstract The gravitational wave event from the binary neutron star (BNS) merger GW170817 and the following multi-messenger observations present strong evidence for i) merger ejecta expanding with substantial velocities and ii) a relativistic jet which had to propagate through the merger ejecta. The ejecta’s expansion velocity is not negligible for the jet head motion, which is a fundamental difference from the other systems like collapsars and active galactic nuclei. Here we present an analytic model of the jet propagation in an expanding medium. In particular, we notice a new term in the expression of the breakout time and velocity. In parallel, we perform a series of over a hundred 2D numerical simulations of jet propagation. The BNS merger ejecta is prepared based on numerical relativity simulations of a BNS merger with the highest-resolution to date. We show that our analytic results agree with numerical simulations over a wide parameter space. Then we apply our analytic model to GW170817, and obtain two solid constraints on: i) the central engine luminosity as Liso, 0 ∼ 3 × 1049 − 2.5 × 1052 erg s−1, and on ii) the delay time between the merger and engine activation t0 − tm < 1.3 s. The engine power implies that the apparently-faint short gamma-ray burst (sGRB) sGRB 170817A is similar to typical sGRBs if observed on-axis.

Physics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 194-228 ◽  
Author(s):  
Houri Ziaeepour

Gravitational Waves (GW) from coalescence of a Binary Neutron Star (BNS) and its accompanying short Gamma-Ray Burst (GRB) GW/GRB 170817A confirmed the presumed origin of these puzzling transients and opened up the way for relating properties of short GRBs to those of their progenitor stars and their surroundings. Here we review an extensive analysis of the prompt gamma-ray and late afterglows of this event. We show that a fraction of polar ejecta from the merger had been accelerated to ultra-relativistic speeds. This structured jet had an initial Lorentz factor of about 260 in our direction, which was O ( 10 ∘ ) from the jet’s axis, and was a few orders of magnitude less dense than in typical short GRBs. At the time of arrival to circum-burst material the ultra-relativistic jet had a close to Gaussian profile and a Lorentz factor ≳ 130 in its core. It had retained in some extent its internal collimation and coherence, but had extended laterally to create mildly relativistic lobes—a cocoon. Its external shocks on the far from center inhomogeneous circum-burst material and low density of colliding shells generated slowly rising afterglows, which peaked more than 100 days after the prompt gamma-ray. The circum-burst material was somehow correlated with the merger. As non-relativistic outflows or tidally ejected material during BNS merger could not have been arrived to the location of the external shocks before the relativistic jet, circum-burst material might have contained recently ejected materials from resumption of internal activities, faulting and mass loss due to deformation and breaking of stars crusts by tidal forces during latest stages of their inspiral but well before their merger. By comparing these findings with the results of relativistic Magneto-Hydro-Dynamics (MHD) simulations and observed gravitational waves we conclude that progenitor neutron stars were most probably old, had close masses and highly reduced magnetic fields.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 119 ◽  
Author(s):  
Antonios Nathanail

In the dawn of the multi-messenger era of gravitational wave astronomy, which was marked by the first ever coincident detection of gravitational waves and electromagnetic radiation, it is important to take a step back and consider our current established knowledge. Numerical simulations of binary neutron star mergers and simulations of short GRB jets must combine efforts to understand such complicated and phenomenologically rich explosions. We review the status of numerical relativity simulations with respect to any jet or magnetized outflow produced after merger. We compare what is known from such simulations with what is used and obtained from short GRB jet simulations propagating through the BNS ejecta. We then review the established facts on this topic, as well as discuss things that need to be revised and further clarified.


2019 ◽  
Vol 491 (4) ◽  
pp. 4735-4741 ◽  
Author(s):  
Michael F Bietenholz ◽  
Raffaella Margutti ◽  
Deanne Coppejans ◽  
Kate D Alexander ◽  
Megan Argo ◽  
...  

ABSTRACT We report on Very Long Baseline Interferometry (VLBI) observations of the fast and blue optical transient (FBOT), AT 2018cow. At ∼62 Mpc, AT 2018cow is the first relatively nearby FBOT. The nature of AT 2018cow is not clear, although various hypotheses from a tidal disruption event to different kinds of supernovae have been suggested. It had a very fast rise time (3.5 d) and an almost featureless blue spectrum, although high photospheric velocities (40 000 km s−1) were suggested early on. The X-ray luminosity was very high, ∼1.4 × 1043 erg s−1, larger than those of ordinary supernovae (SNe), and more consistent with those of SNe associated with gamma-ray bursts. Variable hard X-ray emission hints at a long-lived ‘central engine.’ It was also fairly radio luminous, with a peak 8.4-GHz spectral luminosity of ∼4 × 1028 erg s−1 Hz−1, allowing us to make VLBI observations at ages between 22 and 287 d. We do not resolve AT 2018cow. Assuming a circularly symmetric source, our observations constrain the average apparent expansion velocity to be ${\lt}0.49\, c$ by t = 98 d (3σ limit). We also constrain the proper motion of AT 2018cow to be ${\lt}0.51\, c$. Since the radio emission generally traces the fastest ejecta, our observations make the presence of a long-lived relativistic jet with a lifetime of more than 1 month very unlikely.


2020 ◽  
Vol 498 (2) ◽  
pp. 2384-2390 ◽  
Author(s):  
Haoxiang Lin ◽  
Tomonori Totani

ABSTRACT Binary neutron star (BNS) mergers are one of the proposed origins for both repeating and non-repeating fast radio bursts (FRBs), which associates FRBs with gravitational waves and short gamma-ray bursts (GRBs). In this work, we explore detectability of radio afterglows from BNS mergers and compare it to the observed radio limits on FRB afterglow. We calculate the afterglow flux powered by the two components: a relativistic jet and a slower isotropic ejecta, and quantify the detection probability as a function of the source redshift, observing time, and flux sensitivity. The model parameter distributions inferred from short GRB afterglows are adopted, and viewing angle distributions (uniform spherical, gravitational-wave, on-axis biased) are assumed to reflect different searching scenario. Assuming that FRBs are not strongly beamed, we make comparison to FRBs detected with reported radio limits and find the detection probabilities are 1–10 per cent in general, and hence not a strong constraint on the BNS progenitor model considering the small sample number (&lt;10). In particular for some nearby FRBs (e.g. 180916.J0158+65, 190608), we find a high chance of detection (&gt;20 per cent at 10 μJy sensitivity) for the isotropic component that would peak around ∼1–10 yr after the merger. Therefore, a long-term radio monitoring of persistent radio emission for these objects is important.


Author(s):  
E Troja ◽  
A J Castro-Tirado ◽  
J Becerra González ◽  
Y Hu ◽  
G S Ryan ◽  
...  

Abstract GRB 160821B is a short duration gamma-ray burst (GRB) detected and localized by the Neil Gehrels Swift Observatory in the outskirts of a spiral galaxy at z=0.1613, at a projected physical offset of ≈16 kpc from the galaxy’s center. We present X-ray, optical/nIR and radio observations of its counterpart and model them with two distinct components of emission: a standard afterglow, arising from the interaction of the relativistic jet with the surrounding medium, and a kilonova, powered by the radioactive decay of the sub-relativistic ejecta. Broadband modeling of the afterglow data reveals a weak reverse shock propagating backward into the jet, and a likely jet-break at ≈3.5 d. This is consistent with a structured jet seen slightly off-axis (θview ∼ θcore) while expanding into a low-density medium (n ≈ 10−3 cm−3). Analysis of the kilonova properties suggests a rapid evolution toward red colors, similar to AT2017gfo, and a low nIR luminosity, possibly due to the presence of a long-lived neutron star. The global properties of the environment, the inferred low mass (Mej ≲ 0.006 M⊙) and velocities (vej ≳ 0.05c) of lanthanide-rich ejecta are consistent with a binary neutron star merger progenitor.


2020 ◽  
Vol 634 ◽  
pp. A73 ◽  
Author(s):  
I. Ebrová ◽  
M. Bílek ◽  
M. K. Yıldız ◽  
J. Eliášek

Context. NGC 4993 is the shell galaxy host of the GRB170817A short gamma-ray burst and the GW170817 gravitational-wave event produced during a binary-neutron-star coalescence. Aims. The galaxy shows signs, including the stellar shells, that it has recently accreted a smaller, late-type galaxy. The accreted galaxy might be the original host of the binary neutron star. Methods. We measured the positions of the stellar shells of NGC 4993 in an HST/ACS archival image and use the shell positions to constrain the time of the galactic merger. Results. According to the analytical model of the evolution of the shell structure in the expected gravitational potential of NGC 4993, the galactic merger happened at least 200 Myr ago, with a probable time roughly around 400 Myr, and the estimates higher than 600 Myr being improbable. This constitutes the lower limit on the age of the binary neutron star, because the host galaxy was probably quenched even before the galactic merger, and the merger has likely shut down the star formation in the accreted galaxy. We roughly estimate the probability that the binary neutron star originates in the accreted galaxy to be around 30%.


2020 ◽  
Vol 499 (1) ◽  
pp. L96-L100
Author(s):  
B Patricelli ◽  
M G Bernardini

ABSTRACT The joint observation of GW170817 and GRB170817A proved that binary neutron star (BNS) mergers are progenitors of short gamma-ray bursts (SGRBs): this established a direct link between the still unsettled SGRB central engine and the outcome of BNS mergers, whose nature depends on the equation of state (EOS) and on the masses of the NSs. We propose a novel method to probe the central engine of SGRBs based on this link. We produce an extended catalogue of BNS mergers by combining recent theoretically predicted BNS merger rate as a function of redshift and the NS mass distribution inferred from measurements of Galactic BNSs. We use this catalogue to predict the number of BNS systems ending as magnetars (stable or supramassive NS) or BHs (formed promptly or after the collapse of a hypermassive NS) for different EOSs, and we compare these outcomes with the observed rate of SGRBs. Despite the uncertainties mainly related to the poor knowledge of the SGRB jet structure, we find that for most EOSs the rate of magnetars produced after BNS mergers is sufficient to power all the SGRBs, while scenarios with only BHs as possible central engine seem to be disfavoured.


1996 ◽  
Vol 165 ◽  
pp. 489-502
Author(s):  
Tsvi Piran

Neutron star binaries, such as the one observed in the famous binary pulsar PSR 1913+16, end their life in a catastrophic merger event (denoted here NS2M). The merger releases ∼5 1053 ergs, mostly as neutrinos and gravitational radiation. A small fraction of this energy suffices to power γ-ray bursts (GRBs) at cosmological distances. Cosmological GRBs must pass, however, an optically thick fireball phase and the observed γ rays emerge only at the end of this phase. Hence, it is difficult to determine the nature of the source from present observations (the agreement between the rates of GRBs and NS2Ms providing only indirect evidence for this model). In the future a coinciding detection of a GRB and a gravitational-radiation signal could confirm this model.


2020 ◽  
Vol 495 (4) ◽  
pp. 3780-3787 ◽  
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT The observations of GW170817/GRB170817A have confirmed that the coalescence of a neutron-star binary is the progenitor of a short gamma-ray burst (GRB). In the standard picture of a short GRB, a collimated highly relativistic outflow is launched after merger and it successfully breaks out from the surrounding ejected matter. Using initial conditions inspired from numerical-relativity binary neutron-star merger simulations, we have performed general-relativistic hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations in which the jet is launched and propagates self-consistently. The complete set of simulations suggests that: (i) MHD jets have an intrinsic energy and velocity polar structure with a ‘hollow core’ subtending an angle θcore ≈ 4°–5° and an opening angle of θjet &gt; ≳ 10°; (ii) MHD jets eject significant amounts of matter and two orders of magnitude more than HD jets; (iii) the energy stratification in MHD jets naturally yields the power-law energy scaling E(&gt; Γβ) ∝ (Γβ)−4.5; (iv) MHD jets provide fits to the afterglow data from GRB170817A that are comparatively better than those of the HD jets and without free parameters; and (v) finally, both of the best-fitting HD/MHD models suggest an observation angle θobs ≃ 21° for GRB170817A.


Sign in / Sign up

Export Citation Format

Share Document