surrounding medium
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 187)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Santiago M Bedoya ◽  
Marcelo Marucho

An accurate characterization of the polyelectrolyte properties of actin filaments might provide a deeper understanding of the fundamental mechanisms governing the intracellular ionic wave packet propagation in neurons. Infinitely long cylindrical models for actin filaments and approximate electrochemical theories for the electrolyte solutions were recently used to characterize these properties in in-vitro and intracellular conditions. This article uses a molecular structure model for actin filaments to investigate the impact of roughness and finite size on the mean electrical potential, ionic density distributions, currents, and conductivities. We solved the electrochemical theories numerically without further approximations. Our findings bring new insights into the electrochemical interactions between a filament′s irregular surface charge density and the surrounding medium. The irregular shape of the filament structure model generated pockets, or hot spots, where the current density reached higher or lower magnitudes than those in neighboring areas throughout the filament surface. It also revealed the formation of a well-defined asymmetric electrical double layer with a thickness larger than that commonly used for symmetric models.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Amartya Mandal ◽  
Pragya Tiwari ◽  
Paul K. Upputuri ◽  
Venkata R. Dantham

AbstractHerein, we report the theoretical investigation on the photonic nanojets (PNJs) of single dielectric microspheres illuminated by focused broadband radiation (polychromatic light) from a Halogen lamp, supercontinuum source, light-emitting diode, and Hg arc lamp. The role of incident beam waist, refractive index of the surrounding medium, and radius of the microsphere on the characteristic parameters such as the electric field intensity enhancement, effective width, and length of the PNJ is studied. Interestingly, the characteristic parameters of the PNJs of solid microspheres obtained for the above-mentioned broadband radiation sources are found close to those observed for the focused monochromatic radiation of wavelengths which are near to the central wavelengths of the sources. Moreover, the characteristic parameters of PNJs of the core–shell microspheres of different thicknesses (t) illuminated by polychromatic radiation from most commonly used sources such as Halogen and Hg arc lamps are studied. For each t value, a suitable wavelength of monochromatic radiation has been found to generate the PNJ with characteristic parameters which are close to those obtained in the case of polychromatic radiation. We believe that the analytical theory and the theoretical simulations reported here would be useful for researchers who work in the fields such as PNJ assisted photoacoustic spectroscopy, white light nanoscopy, low-coherence phase-shifting interference microscopy, and Mirau interferometry.


Author(s):  
Marina Shitikova ◽  
Anastasiya Krusser

In the present paper, the forced driven nonlinear vibrations of an elastic plate in a viscoelastic medium and resting on a viscoelastic Winkler-type foundation are studied. The damping features of the surrounding medium and foundation are described by the Kelvin-Voigt model and standard linear solid model with fractional derivatives, respectively. The dynamic response of the plate is described by the set of nonlinear differential equations with due account for the fact that the plate is being under the conditions of the internal resonance accompanied by the external resonance. The expressions for the stress function and nonlinear coefficients for different types of boundary conditions are presented.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 115
Author(s):  
Quirino D’Amato ◽  
Isabella Prandoni ◽  
Marisa Brienza ◽  
Roberto Gilli ◽  
Cristian Vignali ◽  
...  

In this work we performed a spectral energy distribution (SED) analysis in the optical/infrared band of the host galaxy of a proto-brightest bluster galaxy (BCG, NVSS J103023 + 052426) in a proto-cluster at z = 1.7. We found that it features a vigorous star formation rate (SFR) of ∼570 M⊙/yr and a stellar mass of M*∼3.7×1011M⊙; the high corresponding specific SFR = 1.5±0.5Gyr−1 classifies this object as a starburst galaxy that will deplete its molecular gas reservoir in ∼3.5×108 yr. Thus, this system represents a rare example of a proto-BCG caught during the short phase of its major stellar mass assembly. Moreover, we investigated the nature of the host galaxy emission at 3.3 mm. We found that it originates from the cold dust in the interstellar medium, even though a minor non-thermal AGN contribution cannot be completely ruled out. Finally, we studied the polarized emission of the lobes at 1.4 GHz. We unveiled a patchy structure where the polarization fraction increases in the regions in which the total intensity shows a bending morphology; in addition, the magnetic field orientation follows the direction of the bendings. We interpret these features as possible indications of an interaction with the intracluster medium. This strengthens the hypothesis of positive AGN feedback, as inferred in previous studies of this object on the basis of X-ray/mm/radio analysis. In this scenario, the proto-BCG heats the surrounding medium and possibly enhances the SFR in nearby galaxies.


Author(s):  
Jinyu Yang ◽  
Ed V Barnat ◽  
Seong-kyun Im ◽  
David B. Go

Abstract When a piezoelectric transformer (PT) is actuated at its second harmonic frequency by a low input voltage, the generated electric field at the distal end can be sufficient to breakdown the surrounding gas, making them attractive power sources for non-equilibrium plasma generation. Understanding the potential and electric fields produced in the surrounding medium by the PT is important for effectively designing and using PT plasma devices. In this work, the spatiotemporally resolved characteristics of the electric field generated by a PT operating in open air have been investigated using the femtosecond electric field-induced second harmonic generation (E-FISH) method. Electric field components were determined by simultaneously conducting E-FISH measurements with the incident laser polarized in two orthogonal directions relative to the PT crystal. Results of this work demonstrate the spatial distribution of electric field around the PT’s output distal end and how it evolves as a function of time. Notably, the strongest electric field appears on the face of the PT’s distal surface, near the top and bottom edges and decreases by approximately 70% over 3 mm. The time delay between the PT’s input voltage and measured electric field indicates that there is an about 0.45 phase difference between the PT’s input voltage and output signal.


2021 ◽  
Vol 922 (2) ◽  
pp. 233
Author(s):  
Stella Koch Ocker ◽  
James M. Cordes ◽  
Shami Chatterjee ◽  
Timothy Dolch

Abstract Stellar bow shocks are observed in a variety of interstellar environments and shaped by the conditions of gas in the interstellar medium (ISM). In situ measurements of turbulent density fluctuations near stellar bow shocks are only achievable with a few observational probes, including Hα-emitting bow shocks and the Voyager Interstellar Mission (VIM). In this paper, we examine density variations around the Guitar Nebula, an Hα bow shock associated with PSR B2224+65, in tandem with density variations probed by VIM near the boundary of the solar wind and ISM. High-resolution Hubble Space Telescope observations of the Guitar Nebula taken between 1994 and 2006 trace density variations over scales from hundreds to thousands of au, while VIM density measurements made with the Voyager 1 Plasma Wave System constrain variations from thousands of meters to tens of au. The power spectrum of density fluctuations constrains the amplitude of the turbulence wavenumber spectrum near the Guitar Nebula to log 10 C n 2 = − 0.8 ± 0.2 m−20/3 and for the very local ISM probed by Voyager to log 10 C n 2 = − 1.57 ± 0.02 m−20/3. Spectral amplitudes obtained from multiepoch observations of four other Hα bow shocks also show significant enhancements from values that are considered typical for the diffuse, warm ionized medium, suggesting that density fluctuations near these bow shocks may be amplified by shock interactions with the surrounding medium or selection effects that favor Hα emission from bow shocks embedded in denser media.


2021 ◽  
Vol 923 (2) ◽  
pp. 256
Author(s):  
Yu Qiu ◽  
Brian R. McNamara ◽  
Tamara Bogdanović ◽  
Kohei Inayoshi ◽  
Luis C. Ho

Abstract Outflows driven by active galactic nuclei (AGNs) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of kinetically resolved data of the hot plasma that permeates the circumgalactic and intracluster space. In this work, we use a single parameter, outflow-to-accretion mass-loading factor m = M ̇ jet / M ̇ BH , to characterize the outflows that mediate the interaction between SMBHs and their hosts. By modeling both M87 and Perseus, and comparing the simulated thermal profiles with the X-ray observations of these two systems, we demonstrate that m can be constrained between 200 and 500. This parameter corresponds to a bulk flow speed between 4000 and 7000 km s−1 at around 1 kpc, and a thermalized outflow temperature between 108.7 and 109 K. Our results indicate that the dominant outflow speeds in giant elliptical galaxies and clusters are much lower than in the close vicinity of the SMBH, signaling an efficient coupling with and deceleration by the surrounding medium on length scales below 1 kpc. Consequently, AGNs may be efficient at launching outflows ∼10 times more massive than previously uncovered by measurements of cold, obscuring material. We also examine the mass and velocity distribution of the cold gas, which ultimately forms a rotationally supported disk in simulated clusters. The rarity of such disks in observations indicates that further investigations are needed to understand the evolution of the cold gas after it forms.


2021 ◽  
Author(s):  
Sai Adapa ◽  
Ateeque Malani

The swelling capacity and stability of clay play a crucial role in various areas ranging from cosmetics to oil extraction; hence change in their swelling behavior after cation exchange with the surrounding medium is important for their efficient utilization. Here we focus on understanding the role of different hydration properties of cation on the thermodynamics of clay swelling by water adsorption. We have used mica as the reference clay, Na+, Li+, and H+ ions as the interstitial cations, and performed grand canonical Monte Carlo simulations of water adsorption in mica pores (of widths d = 4−40 Å). We found that water adsorption in Na-, Li- and H-mica pores is qualitatively similar; however significant quantitative differences are observed, especially at smaller d. Higher water density in H-mica pores (ρH) was expected due to the smaller size of H+ ions having higher hydration energy. However, a counter-intuitive trend of ρLi > ρNa > ρb (bulk density) > ρH was observed due to adsorption energy where the contribution of mica framework atoms was also found to be significant. The disjoining pressure (Π), swelling free energy (∆Ωex), and several structural properties of confined water and ions were calculated to perform thermodynamic analysis of the system. Our detailed calculations have captured the structural evolution of ions and water, especially the transitions from mono- to bi- and multilayer as a function of d. Oscillatory behavior in the Π and ∆Ωex profiles with diminishing to zero for d ≥ 11 Å is observed in all three mica systems. A shift in the location of global minima of ∆Ωex towards the higher d values and ∆Ωex becoming more repulsive is observed in the increasing order of hydration energy of Na+, Li+, and H + ions. The ∆Ωex for Na-mica is characterized by global minima at d = 6 Å corresponding to crystalline swelling, a significant barrier for crystalline swelling from d = 6 to 9 Å and lower for crystalline (d = 9 Å) to osmotic swelling (d > 12 Å). For Li-mica, the energy barrier for crystalline to osmotic swelling is lesser compared to the Na-mica system, whereas for H-mica the ∆Ωex > 0 for all d thus favoring osmotic swelling. We found that the hydration of cations by surface atoms plays a key role in the thermodynamics of clay swelling. The Na+ ions hydrate more number of surface oxygens, act as anchors, and hold the mica pore at d = 6 Å by sharing hydrating water with ions of opposite sides forming an electrostatically connected bridge of mica Na-water-Na-mica. The Li+ ions do hydrate surface oxygen atoms, albeit lesser number and sharing of hydration shell with nearby Li+ ions is also minimum. Both, surface hydration and water sharing, is minimum in the H+ ion case, as they are mostly present in the center of the pore as diffusive ions; thus exerting a consistent osmotic pressure on the mica frameworks, favoring swelling.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3191
Author(s):  
Marcus Himmler ◽  
Dirk W. Schubert ◽  
Thomas A. Fuchsluger

The transparency of nanofibrous scaffolds is of highest interest for potential applications like corneal wound dressings in corneal tissue engineering. In this study, we provide a detailed analysis of light transmission through electrospun polycaprolactone (PCL) scaffolds. PCL scaffolds were produced via electrospinning, with fiber diameters in the range from (35 ± 13) nm to (167 ± 35) nm. Light transmission measurements were conducted using UV–vis spectroscopy in the range of visible light and analyzed with respect to the influence of scaffold thickness, fiber diameter, and surrounding medium. Contour plots were compiled for a straightforward access to light transmission values for arbitrary scaffold thicknesses. Depending on the fiber diameter, transmission values between 15% and 75% were observed for scaffold thicknesses of 10 µm. With a decreasing fiber diameter, light transmission could be improved, as well as with matching refractive indices of fiber material and medium. For corneal tissue engineering, scaffolds should be designed as thin as possible and fabricated from polymers with a matching refractive index to that of the human cornea. Concerning fiber diameter, smaller fiber diameters should be favored for maximizing graft transparency. Finally, a novel, semi-empirical formulation of light transmission through nanofibrous scaffolds is presented.


2021 ◽  
Vol 922 (2) ◽  
pp. 130
Author(s):  
Yi Zhang (张艺) ◽  
Ruo-Yu Liu ◽  
S. Z. Chen ◽  
Xiang-Yu Wang

Abstract Recently, gamma-ray halos of a few degree extension have been detected around two middle-aged pulsars, namely, Geminga and PSR B0656+14, by the High Altitude Water Cherenkov observatory (HAWC). The gamma-ray radiation arises from relativistic electrons that escape the pulsar wind nebula and diffuse in the surrounding medium. The diffusion coefficient is found to be significantly lower than the average value in the Galactic disk. If so, given a typical transverse velocity of 300–500 km s−1 for a pulsar, its displacement could be important in shaping the morphology of its gamma-ray halos. Motivated by this, we study the morphology of pulsar halos considering the proper motion of pulsar. We define three evolutionary phases of the pulsar halo to categorize its morphological features. The morphology of pulsar halos below 10 TeV is double peaked or single peaked with an extended tail, which depends on the electron injection history. Above 10 TeV, the morphology of pulsar halos is nearly spherical, due to the short cooling timescale (<50 kyr) for tens of teraelectronvolt electrons. We also quantitatively evaluate the separation between the pulsar and the center of the gamma-ray halo, as well as the influence of different assumptions on the pulsar characteristics and the injected electrons. Our results suggest that the separation between the center of the gamma-ray halo above 10 TeV and the associated pulsar is usually too small to be observable by HAWC or the Large High Altitude Air Shower Observatory. Hence, our results provide a useful approach to constrain the origin of extended sources at very high energies.


Sign in / Sign up

Export Citation Format

Share Document