central engine
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 65)

H-INDEX

36
(FIVE YEARS 10)

Author(s):  
chen chun ◽  
Rongfeng Shen

Abstract Fast Blue Optical Transients (FBOTs) are luminous transients with fast evolving (typically trise < 12 days) light curve and blue color (usually−0.2 > g−r > −0.3)that cannot be explained by a supernova-like explosion. We propose a radiative diffusion in a time-dependent outflow model to interpret such special transients. In this model, we assume a stellar-mass black hole is formed from stellar core-collapse. As a central engine, the black hole accretes the infalling stellar envelope material via an accretion disk. Due to the extremely super- Eddington accretion rate, the disk ejects continuous outflow during a few days. We consider the ejection of the outflow to be time-dependent. The outflow is optically thick initially and photons are frozen in it. As the outflow expands over time, photons gradually escape, and our work is to model such an evolution. Numerical and analytical calculations are considered separately, and the results are consistent. We apply the model to three typical FBOTs: PS1-10bjp, ZTF18abukavn, and ATLAS19dqr. The modeling finds the total mass of the outflow (∼ 1M⊙), and the total time of the ejection (∼ a few days) for them, leading us to speculate that they may be the result of the collapse of massive stars.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Elena Fedorova ◽  
Bohdan Hnatyk ◽  
Antonino Del Popolo ◽  
Anatoliy Vasylenko ◽  
Vadym Voitsekhovskyi

We consider the sample of 55 blazars and Seyferts cross-correlated from the Planck all-sky survey based on the Early Release Compact Source Catalog (ERCSC) and Swift BAT 105-Month Hard X-ray Survey. The radio Planck spectra vs. X-ray Swift/XRT+BAT spectra of the active galactic nuclei (AGN) sample were fitted with the simple and broken power law (for the X-ray spectra taking into account also the Galactic neutral absorption) to test the dependencies between the photon indices of synchrotron emission (in radio range) and synchrotron self-Compton (SSC) or inverse-Compton emission (in X-rays). We show that for the major part of the AGN in our sample there is a correspondence between synchrotron and SSC photon indices (one of two for broken power-law model) compatible within the error levels. For such objects, this can give a good perspective for the task of distinguishing between the jet base counterpart from that one emitted in the disk-corona AGN “central engine”.


2022 ◽  
Vol 924 (2) ◽  
pp. 69
Author(s):  
Shuang-Xi Yi ◽  
Mei Du ◽  
Tong Liu

Abstract Distinct X-ray plateau and flare phases have been observed in the afterglows of gamma-ray bursts (GRBs), and most of them should be related to central engine activities. In this paper, we collect 174 GRBs with X-ray plateau phases and 106 GRBs with X-ray flares. There are 51 GRBs that overlap in the two selected samples. We analyze the distributions of the proportions of the plateau energy E plateau and the flare energy E flare relative to the isotropic prompt emission energy E γ,iso. The results indicate that they well meet the Gaussian distributions and the medians of the logarithmic ratios are ∼−0.96 and −1.39 in the two cases. Moreover, strong positive correlations between E plateau (or E flare ) and E γ,iso with slopes of ∼0.95 (or ∼0.80) are presented. For the overlapping sample, the slope is ∼0.80. We argue that most of X-ray plateaus and flares might have the same physical origin but appear with different features because of the different circumstances and radiation mechanisms. We also test the applicabilities of two models, i.e., black holes surrounded by fractured hyperaccretion disks and millisecond magnetars, on the origins of X-ray plateaus and flares.


2022 ◽  
Vol 21 (12) ◽  
pp. 300
Author(s):  
Tian-Ci Zheng ◽  
Long Li ◽  
Le Zou ◽  
Xiang-Gao Wang

Abstract The X-ray flares have usually been ascribed to long-lasting activities of the central engine of gamma-ray bursts (GRBs), e.g., fallback accretion. The GRB X-ray plateaus, however, favor a millisecond magnetar central engine. The fallback accretion can be significantly suppressed due to the propeller effect of a magnetar. Therefore, if the propeller regime cannot resist the mass flow onto the surface of the magnetar efficiently, the X-ray flares raising upon the magnetar plateau would be expected. In this work, such peculiar cases are connected to the accretion process of the magnetars, and an implication for magnetar-disc structure is given. We investigate the repeated accretion process with multi-flare GRB 050730, and give a discussion for the accretion-induced variation of the magnetic field in GRB 111209A. Two or more flares exhibit in the GRB 050730, 060607A and 140304A; by adopting magnetar mass M = 1.4 M ⊙ and radius R = 12 km, the average mass flow rates of the corresponding surrounding disk are 3.53 × 10−4 M ⊙ s−1, 4.23 × 10−4 M ⊙ s−1, and 4.33 × 10−4 M ⊙ s−1, and the corresponding average sizes of the magnetosphere are 5.01 × 106 cm, 6.45 × 106 cm, and 1.09 × 107 cm, respectively. A statistic analysis that contains eight GRBs within 12 flares shows that the total mass loading in single flare is ∼ 2 × 10−5 M ⊙. In the lost mass of a disk, there are about 0.1% used to feed a collimated jet.


Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Mauri J. Valtonen ◽  
Lankeswar Dey ◽  
Achamveedu Gopakumar ◽  
Staszek Zola ◽  
S. Komossa ◽  
...  

Successful observations of the seven predicted bremsstrahlung flares from the unique bright blazar OJ 287 firmly point to the presence of a nanohertz gravitational wave (GW) emitting supermassive black hole (SMBH) binary central engine. We present arguments for the continued monitoring of the source in several electromagnetic windows to firmly establish various details of the SMBH binary central engine description for OJ 287. In this article, we explore what more can be known about this system, particularly with regard to accretion and outflows from its two accretion disks. We mainly concentrate on the expected impact of the secondary black hole on the disk of the primary on 3 December 2021 and the resulting electromagnetic signals in the following years. We also predict the times of exceptional fades, and outline their usefulness in the study of the host galaxy. A spectral survey has been carried out, and spectral lines from the secondary were searched for but were not found. The jet of the secondary has been studied and proposals to discover it in future VLBI observations are mentioned. In conclusion, the binary black hole model explains a large number of observations of different kinds in OJ 287. Carefully timed future observations will be able to provide further details of its central engine. Such multi-wavelength and multidisciplinary efforts will be required to pursue multi-messenger nanohertz GW astronomy with OJ 287 in the coming decades.


2021 ◽  
Author(s):  
Saif Al Aufi ◽  
Hussain Al Lawati ◽  
Asif Ismail ◽  
Sajad Al Lawati ◽  
Christian Koepchen ◽  
...  

Abstract Petroleum Development of Oman (PDO) has grown rapidly over the past few years and is seen as an innovative organization and a leading company within the Middle East when it comes to applying best practice, adding value to the economical and societal development of the Sultanate of Oman through many Knowledge Management (KM) activities. As the Sultanate's leading Oil and gas exploration and production company it is the central engine of the Sultanate's economy. Key to the success of our Digital KM Program has been focus on the importance of developing the human intellectual capital elements to nurture, develop and sustain our people as key assets. PDO is aware of the potential value of the Enterprise Information and the robust data as showcased In the Figure-1 which can be transformed into knowledge that can be turned and can be used to gain the business benefits such as a competitive advantage, cost minimization, innovation.


2021 ◽  
Vol 923 (2) ◽  
pp. 251
Author(s):  
Yoshiaki Hagiwara ◽  
Shinji Horiuchi ◽  
Masatoshi Imanishi ◽  
Philip G. Edwards

Abstract We present the results of second-epoch ALMA observations of 321 GHz H2O emission toward two nearby active galactic nuclei, NGC 4945 and the Circinus galaxy, together with Tidbinbilla 70 m monitoring of their 22 GHz H2O masers. The two-epoch ALMA observations show that the strengths of the 321 GHz emission are variable by a factor of at least a few, confirming a maser origin. In the second epoch, 321 GHz maser emission from NGC 4945 was not detected, while for the Circinus galaxy the flux density significantly increased and the velocity gradient and dispersion have been measured. With the velocity gradient spanning ∼110 km s−1, we calculate the disk radius to be ∼28 pc, assuming disk rotation around the nucleus. We also estimate the dynamical mass within the central 28 pc to be 4.3 × 108 M ☉, which is significantly larger than the larger-scale dynamical mass, suggesting the velocity gradient does not trace circular motions on that scale. The overall direction of the velocity gradient and velocity range of the blueshifted features are largely consistent with those of the 22 GHz maser emission in a thin disk with smaller radii of 0.1–0.4 pc and molecular outflows within ∼1 pc from the central engine of the galaxy, implying that the 321 GHz masers could trace part of the circumnuclear disk or the nuclear outflows.


2021 ◽  
Vol 923 (2) ◽  
pp. 150
Author(s):  
Enrique Lopez-Rodriguez ◽  
Rainer Beck ◽  
Susan E. Clark ◽  
Annie Hughes ◽  
Alejandro S. Borlaff ◽  
...  

Abstract Galactic bars are frequent in disk galaxies and they may support the transfer of matter toward the central engine of active nuclei. The barred galaxy NGC 1097 has magnetic forces controlling the gas flow at several kpc scales, which suggest that magnetic fields (B-fields) are dynamically important along the bar and nuclear ring. However, the effect of the B-field on the gas flows in the central kpc scale has not been characterized. Using thermal polarized emission at 89 μm with HAWC+/SOFIA, here, we measure that the polarized flux is spatially located at the contact regions of the outer bar with the starburst ring. The linear polarization decomposition analysis shows that the 89 μm and radio (3.5 and 6.2 cm) polarization traces two different modes, m, of the B-field: a constant B-field orientation and dominated by m = 0 at 89 μm, and a spiral B-field dominated by m = 2 at radio. We show that the B-field at 89 μm is concentrated in the warmest region of a shock driven by the galactic-bar dynamics in the contact regions between the outer bar with the starburst ring. Radio polarization traces a superposition of the spiral B-field outside and within the starburst ring. According to Faraday rotation measures between 3.5 and 6.2 cm, the radial component of the B-field along the contact regions points toward the galaxy's center on both sides. We conclude that gas streams outside and within the starburst ring follow the B-field, which feeds the black hole with matter from the host galaxy.


2021 ◽  
Vol 922 (2) ◽  
pp. 102
Author(s):  
Shu-Jin Hou ◽  
Shuang Du ◽  
Tong Liu ◽  
Hui-Jun Mu ◽  
Ren-Xin Xu

Abstract The central engine of gamma-ray bursts (GRBs) remains an open and cutting-edge topic in the era of multimessenger astrophysics. X-ray plateaus appear in some GRB afterglows, which are widely considered to originate from the spindown of magnetars. According to the stable magnetar scenario of GRBs, an X-ray plateau and a decay phase ∼t −2 should appear in X-ray afterglows. Meanwhile, the “normal” X-ray afterglow is produced by the external shock from a GRB fireball. We analyze the Neil Gehrels Swift GRB data, then find three gold samples that have an X-ray plateau and a decay phase ∼t −2 superimposed on the jet-driven normal component. Based on these features of the lightcurves, we argue that the magnetars should be the central engines of these three GRBs. Future joint multimessenger observations might further test this possibility, which can then be beneficial to constrain GRB physics.


2021 ◽  
Vol 921 (1) ◽  
pp. 64
Author(s):  
Peter K. Blanchard ◽  
Edo Berger ◽  
Matt Nicholl ◽  
Ryan Chornock ◽  
Sebastian Gomez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document