scholarly journals A black hole–white dwarf compact binary model for long gamma-ray bursts without supernova association

2018 ◽  
Vol 475 (1) ◽  
pp. L101-L105 ◽  
Author(s):  
Yi-Ze Dong ◽  
Wei-Min Gu ◽  
Tong Liu ◽  
Junfeng Wang
1999 ◽  
Vol 520 (2) ◽  
pp. 650-660 ◽  
Author(s):  
Chris L. Fryer ◽  
S. E. Woosley ◽  
Marc Herant ◽  
Melvyn B. Davies

2018 ◽  
Vol 168 ◽  
pp. 01015
Author(s):  
Marco Muccino ◽  
Remo Ruffini ◽  
Yerlan Aimuratov ◽  
Laura M. Becerra ◽  
Carlo L. Bianco ◽  
...  

We review our recent results on the classification of long and short gamma-ray bursts (GRBs) in different subclasses. We provide observational evidences for the binary nature of GRB progenitors. For long bursts the induced gravitational collapse (IGC) paradigm proposes as progenitor a tight binary system composed of a carbon-oxygen core (COcore) and a neutron star (NS) companion; the supernova (SN) explosion of the COcore triggers a hypercritical accretion process onto the companion NS. For short bursts a NS–NS merger is traditionally adopted as the progenitor. We also indicate additional sub-classes originating from different progenitors: (COcore)–black hole (BH), BH–NS, and white dwarf–NS binaries. We also show how the outcomes of the further evolution of some of these sub-classes may become the progenitor systems of other sub-classes.


2016 ◽  
Vol 463 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Da-Bin Lin ◽  
Zu-Jia Lu ◽  
Hui-Jun Mu ◽  
Tong Liu ◽  
Shu-Jin Hou ◽  
...  

1999 ◽  
Vol 526 (1) ◽  
pp. 152-177 ◽  
Author(s):  
Chris L. Fryer ◽  
S. E. Woosley ◽  
Dieter H. Hartmann

2013 ◽  
Vol 87 (8) ◽  
Author(s):  
Nicholas Stone ◽  
Abraham Loeb ◽  
Edo Berger

2011 ◽  
Vol 7 (S279) ◽  
pp. 367-368
Author(s):  
Ken'ichiro Nakazato ◽  
Kohsuke Sumiyoshi

AbstractSome supernovae and gamma-ray bursts are thought to accompany a black hole formation. In the process of a black hole formation, a central core becomes hot and dense enough for hyperons and quarks to appear. In this study, we perform neutrino-radiation hydrodynamical simulations of a stellar core collapse and black hole formation taking into account such exotic components. In our computation, general relativity is fully considered under spherical symmetry. As a result, we find that the additional degrees of freedom soften the equation of state of matter and promote the black hole formation. Furthermore, their effects are detectable as a neutrino signal. We believe that the properties of hot and dense matter at extreme conditions are essential for the studies on the astrophysical black hole formation. This study will be hopefully a first step toward a physics of the central engine of gamma-ray bursts.


2021 ◽  
pp. 2150200
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili ◽  
Lasha Pantskhava

In this paper, a brief analysis of repeated and overlapped gamma-ray bursts, fast radio bursts and gravitational waves is done. These signals may not be emitted by isolated cataclysmic events and we suggest interpreting some of them within the impenetrable black hole model, as the radiation reflected and amplified by the black hole horizons.


2020 ◽  
Vol 497 (2) ◽  
pp. 1543-1546 ◽  
Author(s):  
Wei-Min Gu ◽  
Tuan Yi ◽  
Tong Liu

ABSTRACT We propose a compact binary model with an eccentric orbit to explain periodically active fast radio burst (FRB) sources, where the system consists of a neutron star (NS) with strong dipolar magnetic fields and a magnetic white dwarf (WD). In our model, the WD fills its Roche lobe at periastron, and mass transfer occurs from the WD to the NS around this point. The accreted material may be fragmented into a number of parts, which arrive at the NS at different times. The fragmented magnetized material may trigger magnetic reconnection near the NS surface. The electrons can be accelerated to an ultrarelativistic speed, and therefore the curvature radiation of the electrons can account for the burst activity. In this scenario, the duty cycle of burst activity is related to the orbital period of the binary. We show that such a model may work for duty cycles roughly from 10 min to 2 d. For the recently reported 16.35-d periodicity of FRB 180916.J0158 + 65, our model does not naturally explain such a long duty cycle, since an extremely high eccentricity (e > 0.95) is required.


Sign in / Sign up

Export Citation Format

Share Document