scholarly journals Dinoflagellate Spliced Leader RNA Genes Display a Variety of Sequences and Genomic Arrangements

2009 ◽  
Vol 26 (8) ◽  
pp. 1757-1771 ◽  
Author(s):  
H. Zhang ◽  
D. A. Campbell ◽  
N. R. Sturm ◽  
S. Lin
1991 ◽  
Vol 11 (12) ◽  
pp. 6139-6148
Author(s):  
M S Villanueva ◽  
S P Williams ◽  
C B Beard ◽  
F F Richards ◽  
S Aksoy

A new member of a family of site-specific retrotransposons is described in the New World trypanosome Trypanosoma cruzi. This element, CZAR (cruzi-associated retrotransposon), resembles two previously described retrotransposons found in the African trypanosome T. brucei gambiense and the mosquito trypanosomatid Crithidia fasciculata in specifically inserting between nucleotides 11 and 12 of the highly conserved 39-mer of the spliced leader RNA (SL-RNA) gene. CZAR is similar in overall organization to the other two SL-RNA-associated elements. It possesses two potential long open reading frames which resemble the gag and pol genes of retroviruses. In the pol open reading frame, all three elements contain similarly arranged endonuclease domains and share extensive amino acid homology in the reverse transcriptase region. All are associated with the SL-RNA gene locus and are present in low copy numbers. They do not appear to have 5' truncated versions. All three retrotransposons are otherwise quite distinct from one another, with no significant overall amino acid homology. The presence of such retroelements inserted into the identical site within SL-RNA gene sequences in at least three evolutionarily distant trypanosomatid species argues for a functional role. Because these elements appear to have a precise target site requirement for integration, we refer to them as SL siteposons.


1994 ◽  
Vol 14 (7) ◽  
pp. 4565-4570 ◽  
Author(s):  
G L Xu ◽  
B Wieland ◽  
A Bindereif

U6 RNA genes from the trypanosomatids Crithidia fasciculata and Leptomonas seymouri have been isolated and sequenced. As in Trypanosoma brucei, the U6 RNA genes in both C. fasciculata and L. seymouri are arranged in close linkage with upstream tRNA genes. The U6 RNA sequences from C. fasciculata and L. seymouri deviate in five and three positions, respectively, from the published T. brucei sequence. Interestingly, both C. fasciculata U6 RNA genes carry a C-->T change at the second position of the ACAGAG hexanucleotide sequence, which is important for splicing function and has been considered phylogenetically invariable. A compensatory base change of the C. fasciculata spliced leader RNA at the highly conserved 5' splice site position +5, G-->A, suggests that an interaction between the 5' splice site region and U6 RNA recently proposed for the yeast cis-splicing system may also occur in trans splicing.


1991 ◽  
Vol 11 (12) ◽  
pp. 6139-6148 ◽  
Author(s):  
M S Villanueva ◽  
S P Williams ◽  
C B Beard ◽  
F F Richards ◽  
S Aksoy

A new member of a family of site-specific retrotransposons is described in the New World trypanosome Trypanosoma cruzi. This element, CZAR (cruzi-associated retrotransposon), resembles two previously described retrotransposons found in the African trypanosome T. brucei gambiense and the mosquito trypanosomatid Crithidia fasciculata in specifically inserting between nucleotides 11 and 12 of the highly conserved 39-mer of the spliced leader RNA (SL-RNA) gene. CZAR is similar in overall organization to the other two SL-RNA-associated elements. It possesses two potential long open reading frames which resemble the gag and pol genes of retroviruses. In the pol open reading frame, all three elements contain similarly arranged endonuclease domains and share extensive amino acid homology in the reverse transcriptase region. All are associated with the SL-RNA gene locus and are present in low copy numbers. They do not appear to have 5' truncated versions. All three retrotransposons are otherwise quite distinct from one another, with no significant overall amino acid homology. The presence of such retroelements inserted into the identical site within SL-RNA gene sequences in at least three evolutionarily distant trypanosomatid species argues for a functional role. Because these elements appear to have a precise target site requirement for integration, we refer to them as SL siteposons.


2010 ◽  
Vol 38 (4) ◽  
pp. 1125-1130 ◽  
Author(s):  
Jonathan Pettitt ◽  
Neale Harrison ◽  
Ian Stansfield ◽  
Bernadette Connolly ◽  
Berndt Müller

Spliced leader trans-splicing occurs in many primitive eukaryotes including nematodes. Most of our knowledge of trans-splicing in nematodes stems from the model organism Caenorhabditis elegans and relatives, and from work with Ascaris. Our investigation of spliced leader trans-splicing in distantly related Dorylaimia nematodes indicates that spliced-leader trans-splicing arose before the nematode phylum and suggests that the spliced leader RNA gene complements in extant nematodes have evolved from a common ancestor with a diverse set of spliced leader RNA genes.


1987 ◽  
Vol 6 (12) ◽  
pp. 3819-3826 ◽  
Author(s):  
S. Aksoy ◽  
T. M. Lalor ◽  
J. Martin ◽  
L. H. Van der Ploeg ◽  
F. F. Richards

2001 ◽  
Vol 48 (3) ◽  
pp. 325-331 ◽  
Author(s):  
NANCY R. STURM ◽  
DMITRI A. MASLOV ◽  
EDMUNDO C. GRISARD ◽  
DAVID A. CAMPBELL

1994 ◽  
Vol 14 (7) ◽  
pp. 4565-4570
Author(s):  
G L Xu ◽  
B Wieland ◽  
A Bindereif

U6 RNA genes from the trypanosomatids Crithidia fasciculata and Leptomonas seymouri have been isolated and sequenced. As in Trypanosoma brucei, the U6 RNA genes in both C. fasciculata and L. seymouri are arranged in close linkage with upstream tRNA genes. The U6 RNA sequences from C. fasciculata and L. seymouri deviate in five and three positions, respectively, from the published T. brucei sequence. Interestingly, both C. fasciculata U6 RNA genes carry a C-->T change at the second position of the ACAGAG hexanucleotide sequence, which is important for splicing function and has been considered phylogenetically invariable. A compensatory base change of the C. fasciculata spliced leader RNA at the highly conserved 5' splice site position +5, G-->A, suggests that an interaction between the 5' splice site region and U6 RNA recently proposed for the yeast cis-splicing system may also occur in trans splicing.


Sign in / Sign up

Export Citation Format

Share Document