target site
Recently Published Documents


TOTAL DOCUMENTS

1281
(FIVE YEARS 314)

H-INDEX

80
(FIVE YEARS 10)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Emma Bailey ◽  
Linda Field ◽  
Christopher Rawlings ◽  
Rob King ◽  
Fady Mohareb ◽  
...  

Abstract Background Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). Methods and findings In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. Conclusion and significance This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.


Author(s):  
Tamar E. Carter ◽  
Araya Gebresilassie ◽  
Shantoy Hansel ◽  
Lambodhar Damodaran ◽  
Callum Montgomery ◽  
...  

The malaria vector, Anopheles stephensi, which is typically restricted to South Asia and the Middle East, was recently detected in the Horn of Africa. Addressing the spread of this vector could involve integrated vector control that considers the status of insecticide resistance of multiple vector species in the region. Previous reports indicate that the knockdown resistance mutations (kdr) in the voltage-gated sodium channel (vgsc) are absent in both pyrethroid-resistant and pyrethroid-sensitive An. stephensi in eastern Ethiopia; however, similar information about other vector species in the same areas is limited. In this study, kdr and the neighboring intron were analyzed in An. stephensi, An. arabiensis, and Culex pipiens s.l. collected between 2016 and 2017 to determine the evolutionary history of kdr in eastern Ethiopia. A sequence analysis revealed that all of Cx. pipiens s.l. (N = 42) and 71.6% of the An. arabiensis (N = 67) carried kdr L1014F, which is known to confer target-site pyrethroid resistance. Intronic variation was only observed in An. stephensi (six segregating sites, three haplotypes), which was previously shown to have no kdr mutations. In addition, no evidence of non-neutral evolutionary processes was detected at the An. stephensi kdr intron, thereby further supporting the target-site mechanism not being a major resistance mechanism in this An. stephensi population. Overall, these results show key differences in the evolution of target-site pyrethroid/dichlorodiphenyltrichloroethane resistance mutations in populations of vector species from the same region. Variations in insecticide resistance mechanism profiles between eastern Ethiopian mosquito vectors may lead to different responses to insecticides used in integrated vector control.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rulan Wang ◽  
Zhuo Wang ◽  
Zhongyan Li ◽  
Tzong-Yi Lee

Lysine crotonylation (Kcr) is involved in plenty of activities in the human body. Various technologies have been developed for Kcr prediction. Sequence-based features are typically adopted in existing methods, in which only linearly neighboring amino acid composition was considered. However, modified Kcr sites are neighbored by not only the linear-neighboring amino acid but also those spatially surrounding residues around the target site. In this paper, we have used residue–residue contact as a new feature for Kcr prediction, in which features encoded with not only linearly surrounding residues but also those spatially nearby the target site. Then, the spatial-surrounding residue was used as a new scheme for feature encoding for the first time, named residue–residue composition (RRC) and residue–residue pair composition (RRPC), which were used in supervised learning classification for Kcr prediction. As the result suggests, RRC and RRPC have achieved the best performance of RRC at an accuracy of 0.77 and an area under curve (AUC) value of 0.78, RRPC at an accuracy of 0.74, and an AUC value of 0.80. In order to show that the spatial feature is of a competitively high significance as other sequence-based features, feature selection was carried on those sequence-based features together with feature RRPC. In addition, different ranges of the surrounding amino acid compositions’ radii were used for comparison of the performance. After result assessment, RRC and RRPC features have shown competitively outstanding performance as others or in some cases even around 0.20 higher in accuracy or 0.3 higher in AUC values compared with sequence-based features.


2022 ◽  
Author(s):  
Amen Hlaoui ◽  
Olga Chiesa ◽  
Christian C. Figueroa ◽  
Rebha Souissi ◽  
Emanuele Mazzoni ◽  
...  

2022 ◽  
Vol 229 ◽  
pp. 113072
Author(s):  
Junzhi Wang ◽  
Wanfen Cao ◽  
Qiushuang Guo ◽  
Yang Yang ◽  
Lianyang Bai ◽  
...  

Author(s):  
Mayu Yoshida ◽  
Haruna Nagao ◽  
Hajime Sugiyama ◽  
Masaaki Sawa ◽  
Takayoshi Kinoshita
Keyword(s):  

Author(s):  
Hindustan Abdul Ahad ◽  
Haranath Chintaginjala ◽  
Syed Rahamathulla ◽  
Aswarthanarayana Rupasree ◽  
Anegondithimmappa Sajan Kumar ◽  
...  

For a long time, drug delivery systems (DDS) have been targeted to get expected results. With nanotechnology-based DDS, a wide assortment of flawless challenges can be tackled at present. Known as a nanosponge, a nanosponge is a modern division of material consisting of tiny particles that transmit only a few nanometers. The nano-formulations are highly effective for the delivery of low-solubility drugs. Many drugs with narrow therapeutic windows can benefit from improving water solubility. It has even been claimed they can be utilized to target and control delivery. In addition, huge amounts of money have been spent on developing new formulations of the DDS in recent times. Learn how nanosponges are prepared, its advantages, and its disadvantages. Resources were consulted to comprehend recent enhancements and patents in the domain. The ideal DDS has been developed by combining many different formulations; nano sponges are one of them. Analysts have examined them and found that they produce positive results and can improve the stability of poorly water-soluble drugs. The drug will be released at the precise target site when it reaches the body and sticks to the surface of the target site. As medication maximum action declines, it is more difficult to formulate impotent drugs. Considering this, nanosponges are organized and examined to determine whether they are problematic. Nanosponges in drug delivery can be characterized by their characteristics, preparation, factors, and applications. The article was written based on research articles about nanosponges. Data on nanosponges drug delivery systems from the past decade was collected using a factorial design. Study authors report that factor design plays an imperative role in optimizing drug dosage forms. Researchers will save time by reviewing the literature on nanosponges via factorial designs instead of searching for it.


2021 ◽  
Author(s):  
Sonja Kersten ◽  
Jiyang Chang ◽  
Christian D Huber ◽  
Yoav Voichek ◽  
Christa Lanz ◽  
...  

Repeated herbicide applications exert enormous selection on blackgrass (Alopecurus myosuroides), a major weed in cereal crops of the temperate climate zone including Europe. This inadvertent large-scale experiment gives us the opportunity to look into the underlying genetic mechanisms and evolutionary processes of rapid adaptation, which can occur both through mutations in the direct targets of herbicides and through changes in other, often metabolic, pathways, known as non-target-site resistance. How much either type of adaptation relies on de novo mutations versus pre-existing standing variation is important for developing strategies to manage herbicide resistance. We generated a chromosome-level reference genome for A. myosuroides for population genomic studies of herbicide resistance and genome-wide diversity across Europe in this species. Bulked-segregant analysis evidenced that non-target-site resistance has a complex genetic architecture. Through empirical data and simulations, we showed that, despite its simple genetics, target-site resistance mainly results from standing genetic variation, with only a minor role for de novo mutations.


2021 ◽  
Author(s):  
Lichun Cai ◽  
David Comont ◽  
Dana R MacGregor ◽  
Claudia Lowe ◽  
Roland Beffa ◽  
...  

Globally, weedy plants result in more crop yield loss than plant pathogens and insect pests combined. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated environmental management and change. The evolution of resistance to herbicides is an emblematic example of this rapid adaptation. Here, we focus on Alopecurus myosuroides (blackgrass), the most impactful agricultural weed in Europe. To gain insights into the evolutionary history and genomic mechanisms underlying adaptation in blackgrass, we assembled and annotated its large, complex genome. We show that non-target site herbicide resistance is oligogenic and likely evolves from standing genetic variation. We present evidence for divergent selection of resistance at the level of the genome in wild, evolved populations, though at the transcriptional level, resistance mechanisms are underpinned by similar patterns of up-regulation of stress- and defence-responsive gene families. These gene families are expanded in the blackgrass genome, suggesting that the large, duplicated, and dynamic genome plays a role in enabling rapid adaptation in blackgrass. These observations have wide significance for understanding rapid plant adaptation in novel stressful environments.


Sign in / Sign up

Export Citation Format

Share Document