Open Reading Frames
Recently Published Documents





2021 ◽  
Vol 12 (1) ◽  
Emile G. Magny ◽  
Ana Isabel Platero ◽  
Sarah A. Bishop ◽  
Jose I. Pueyo ◽  
Daniel Aguilar-Hidalgo ◽  

AbstractSmall Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11885
Philippe Bardou ◽  
Sandrine Laguerre ◽  
Sarah Maman Haddad ◽  
Sabrina Legoueix Rodriguez ◽  
Elisabeth Laville ◽  

The earth harbors trillions of bacterial species adapted to very diverse ecosystems thanks to specific metabolic function acquisition. Most of the genes responsible for these functions belong to uncultured bacteria and are still to be discovered. Functional metagenomics based on activity screening is a classical way to retrieve these genes from microbiomes. This approach is based on the insertion of large metagenomic DNA fragments into a vector and transformation of a host to express heterologous genes. Metagenomic libraries are then screened for activities of interest, and the metagenomic DNA inserts of active clones are extracted to be sequenced and analysed to identify genes that are responsible for the detected activity. Hundreds of metagenomics sequences found using this strategy have already been published in public databases. Here we present the MINTIA software package enabling biologists to easily generate and analyze large metagenomic sequence sets, retrieved after activity-based screening. It filters reads, performs assembly, removes cloning vector, annotates open reading frames and generates user friendly reports as well as files ready for submission to international sequence repositories. The software package can be downloaded from

2021 ◽  
Huabo Yu ◽  
Chao Feng ◽  
Liang Zhang ◽  
Teng Chi ◽  
Yanling Qi ◽  

Abstract Aeromonas hydrophila (A.hydrophila) is an opportunistic pathogen of fish-human-livestock, which poses a seriously affects to the development of aquaculture. Phage therapy is considered as a process to alternatively control bacterial infections and contaminations. In this study, the genomes of two Aeromonas hydrophila- specific phages PZL-Ah1 and PZL-Ah8 were isolated, characterized and genomic sequence analyzed. Transmission electron microscopy showed that the two phages had been classified as the member of the Podoviridae family. Both the two phages in this study had relatively narrow host range with lytic activity against Aeromonas spp. strains. However, they could lyse 3 common A.hydrophila strain. As revealed from the whole genomic sequence analysis, PZL-Ah1 and PZL-Ah8 coverd the double-stranded genome of 38,641 bp and 40,855 bp in length, with the GC content of 53.68% and 51.89%, respectively. Through gene comparison in NCBI database revealed that PZL-Ah1 and PZL-Ah8 were 97.67% − 95.51% identical to Stenotrophomonas phage IME15 and Aeromonas Phage T7-Ah. Phylogenetic analysis showed that PZL-Ah8, PZL-Ah1 and other two phages belonged to the same genus. A total of 44 and 52 open reading frames (ORFs) were predicted in the PZL-Ah1 and PZL-Ah8 genome, respectively. In the process of gene annotation, 28 (63.6%) ORFs in PZL-Ah1 and 29 (55.8%) ORFs in PZL-Ah8 were known to functional proteins in NCBI database, while the remaining ORFs were classified as “hypothetical proteins”, whose functions were yet unknown. By comparing, ORF 02, ORF 29 and ORF 04 in PZL-Ah1, ORF24 in PZL-Ah8 were responsible for the host cell lysis. In conclusion, genomic studies of these two novel phages would lay the foundation for expanding the phage genome database and providing good candidates for phage typing applications.

2021 ◽  
Weishan Zhang ◽  
Wei Zhang ◽  
Xinling Hu ◽  
Xintong Zhou ◽  
Guobao Tian ◽  

Abstract Noroviruses are one of the main pathogens of acute gastroenteritis, causing frequent outbreaks worldwide every year that seriously affect human health. The GII.4 genotype causes most norovirus (NoV) infections and large-scale outbreaks. By contrast, the GI genotype is relatively rare. In this study, the whole genome sequence of a newly isolated ZD strain from a patient in Beijing, China, was sequenced and analyzed. The ZD strain genome consisted of 7,597 nucleotides and contained three open reading frames. Whole-genomic analysis indicated the strain was a GI.1 genotype, and no recombination site was detected in the genome. The histo-blood group antigen (HBGA)binding site associated with invasion of the GI genotype did not change, implying relatively conservative evolution. Phylogenetic analysis indicated the VP1 sequence of GI.1 strains could be divided into three clusters according to time of appearance: older (1968-2011), earlier (2011-2015), and new (2017-2018). Each cluster showed distinctive amino acid substitution characteristics, and the number of substitutions increased with time. The isolated ZD strain was in the new cluster. This study is the first to conduct a phylogenetic analysis of a GI genotype NoV isolated from Beijing. The results improve understanding of NoV diversity in China and can be a reference for further study of nondominant epidemic strains of NoVs as well as epidemic prevention and control.

2021 ◽  
Vol 4 (1) ◽  
Yuhta Nomura ◽  
Naoshi Dohmae

AbstractIntensive gene annotation has revealed many functional and regulatory elements in the human genome. Although eukaryotic protein-coding genes are generally transcribed into monocistronic mRNAs, recent studies have discovered additional short open reading frames (sORFs) in mRNAs. Here, we performed proteogenomic data mining for hidden proteins categorized into sORF-encoded polypeptides (SEPs) in human cancers. We identified a new SEP-encoding overlapping sORF (oORF) on the cell polarity determinant Scribble (SCRIB) that is considered a proto-oncogene with tumor suppressor function in Hippo-YAP/TAZ, MAPK/ERK, and PI3K/Akt/mTOR signaling. Reanalysis of clinical human proteomic data revealed translational dysregulation of both SCRIB and its oORF, oSCRIB, during carcinogenesis. Biochemical analyses suggested that the translatable oSCRIB constitutively limits the capacity of eukaryotic ribosomes to translate the downstream SCRIB. These findings provide a new example of cis-regulatory oORFs that function as a ribosomal roadblock and potentially serve as a fail-safe mechanism to normal cells for non-excessive downstream gene expression, which is hijacked in cancer.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Mingyang Zhang ◽  
Yilin Zhang ◽  
Xue Han ◽  
Juan Wang ◽  
Yu Yang ◽  

AbstractMembers of the Enterobacter genus are gram-negative bacteria, which are used as plant growth-promoting bacteria, and increasingly recovered from economic plants as emerging pathogens. A new Enterobacter mori strain, designated CX01, was isolated as an emerging bacterial pathogen of a recent outbreak of kiwifruit canker-like disease in China. The main symptoms associated with this syndrome are bleeding cankers on the trunk and branch, and brown leaf spots. The genome sequence of E. mori CX01 was determined as a single chromosome of 4,966,908 bp with 4640 predicted open reading frames (ORFs). To better understand the features of the genus and its potential pathogenic mechanisms, five available Enterobacter genomes were compared and a pan-genome of 4870 COGs with 3158 core COGs were revealed. An important feature of the E. mori CX01 genome is that it lacks a type III secretion system often found in pathogenic bacteria, instead it is equipped with type I, II, and VI secretory systems. Besides, the genes encoding putative virulence effectors, two-component systems, nutrient acquisition systems, proteins involved in phytohormone synthesis, which may contribute to the virulence and adaption to the host plant niches are included. The genome sequence of E. mori CX01 has high similarity with that of E. mori LMG 25,706, though the rearrangements occur throughout two genomes. Further pathogenicity assay showed that both strains can either invade kiwifruit or mulberry, indicating they may have similar host range. Comparison with a closely related isolate enabled us to understand its pathogenesis and ecology.

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1848
Kyeongmin Kim ◽  
Md Maidul Islam ◽  
Dooyoung Kim ◽  
Sung Ho Yun ◽  
Jungmin Kim ◽  

Acinetobacter baumannii is a nosocomial pathogen, which is a problem worldwide due to the emergence of a difficult-to-treat multidrug-resistant A. baumannii (MDRAB). Endolysins are hydrolytic enzymes produced by a bacteriophage that can be used as a potential therapeutic agent for multidrug-resistant bacterial infection in replacing antibiotics. Here, we isolated a novel bacteriophage through prophage induction using mitomycin C from clinical A. baumannii 1656-2. Morphologically, ΦAb1656-2 was identified as a Siphoviridae family bacteriophage, which can infect MDRAB. The whole genome of ΦAb1656-2 was sequenced, and it showed that it is 50.9 kb with a G + C content of 38.6% and 68 putative open reading frames (ORFs). A novel endolysin named AbEndolysin with an N-acetylmuramidase-containing catalytic domain was identified, expressed, and purified from ΦAb1656-2. Recombinant AbEndolysin showed significant antibacterial activity against MDRAB clinical strains without any outer membrane permeabilizer. These results suggest that AbEndolysin could represent a potential antimicrobial agent for treating MDRAB clinical isolates.

2021 ◽  
Dina Alzhanova ◽  
James O. Meyo ◽  
Angelica Juarez ◽  
Dirk P. Dittmer

Kaposi Sarcoma-associated herpesvirus (KSHV) is a carcinogenic double-stranded DNA virus and the etiological agent of Kaposi’s Sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s Disease (MCD). To prevent premature apoptosis and support its replication cycle, KSHV expresses a series of open reading frames (ORFs) that regulate signaling by the p53 tumor suppressor protein. Here we describe a novel viral inhibitor of p53 encoded by KSHV ORF45 and identify its mechanism of action. ORF45 binds to p53 and prevents its interactions with USP7, a p53 deubiquitinase. This results in decreased accumulation, localization of p53 to the cytoplasm, and diminished transcriptional activity. IMPORTANCE Unlike in other cancers, the tumor suppressor protein p53 is rarely mutated in Kaposi Sarcoma (KS). Rather, Kaposi Sarcoma-associated herpesvirus (KSHV) inactivates p53 through multiple viral proteins. One possible therapeutic approach to KS is the activation of p53, which would result in apoptosis and tumor regression. In this regard, it is important to understand all the mechanisms used by KSHV to modulate p53 signaling. This work describes a novel inhibitor of p53 signaling and a potential drug target, ORF45, and identifies the mechanisms of its action.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12132
Yonghao Dong ◽  
Tong Li ◽  
Jin Liu ◽  
Meixue Sun ◽  
Xingyu Chen ◽  

As potential molecular targets for developing novel pest management strategies, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have been considered to initiate odor recognition in insects. Herein, we investigated the OBPs and CSPs in a major global crop pest (Spodoptera exempta). Using transcriptome analysis, we identified 40 OBPs and 33 CSPs in S. exempta, among which 35 OBPs and 29 CSPs had intact open reading frames. Sequence alignment indicated that 30 OBPs and 23 CSPs completely contained the conserved cysteines. OBPs of lepidopteran insects usually belonged to classical, minus-C, and plus-C groups. However, phylogenetic analyses indicated that we only identified 28 classical and seven minus-C OBPs in S. exempta, suggesting that we might have missed some typical OBPs in lepidopteran insects, probably due to their low expression levels. All of the CSPs from S. exempta clustered with the orthologs of other moths. The identification and expression of the OBPs and CSPs were well studied in insect adults by transcriptional analyses, and herein we used samples at different stages to determine the expression of OBPs and CSPs in S. exempta. Interestingly, our data indicated that several OBPs and CSPs were especially or more highly expressed in larvae or pupae than other stages, including three exclusively (SexeOBP13, SexeOBP16 and SexeCSP23) and six more highly (SexeOBP15, SexeOBP37, SexeCSP4, SexeCSP8, SexeCSP19, and SexeCSP33) expressed in larvae, two exclusively (SexeCSP6 and SexeCSP20) and three more highly (SexeOBP18, SexeCSP17, and SexeCSP26) expressed in pupae. Usually, OBPs and CSPs had both male- and female-biased expression patterns in adult antennae. However, our whole-body data indicated that all highly expressed OBPs and CSPs in adults were male-biased or did not differ, suggesting diverse OBP and CSP functions in insect adults. Besides identifying OBPs and CSPs as well as their expression patterns, these results provide a molecular basis to facilitate functional studies of OBPs and CSPs for exploring novel management strategies to control S. exempta.

2021 ◽  
Srujana S. Yadavalli ◽  
Jing Yuan

Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated as genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in E. coli over a decade ago, numerous small proteins have been uncovered across different bacteria. An estimated one-third of these newly discovered proteins are localized to the cell membrane, where they may interact with distinct groups of membrane proteins such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes such as transport, signal transduction, stress response, respiration, cell division, sporulation as well as membrane stability. Thus, small membrane proteins represent a versatile group of regulators of physiology not just at the membrane but the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves, while others serve as alternative drug targets for the development of novel antimicrobials.

Sign in / Sign up

Export Citation Format

Share Document