scholarly journals Reconstructing the Ancestral Germ Line Methylation State of Young Repeats

2011 ◽  
Vol 28 (6) ◽  
pp. 1777-1784 ◽  
Author(s):  
L. Feuerbach ◽  
R. B. Lyngso ◽  
T. Lengauer ◽  
J. Hein
2007 ◽  
Vol 28 (1) ◽  
pp. 386-396 ◽  
Author(s):  
Trevelyan R. Menheniott ◽  
Kathryn Woodfine ◽  
Reiner Schulz ◽  
Andrew J. Wood ◽  
David Monk ◽  
...  

ABSTRACT By combining a tissue-specific microarray screen with mouse uniparental duplications, we have identified a novel imprinted gene, Dopa decarboxylase (Ddc), on chromosome 11. Ddc_exon1a is a 2-kb transcript variant that initiates from an alternative first exon in intron 1 of the canonical Ddc transcript and is paternally expressed in trabecular cardiomyocytes of the embryonic and neonatal heart. Ddc displays tight conserved linkage with the maternally expressed and methylated Grb10 gene, suggesting that these reciprocally imprinted genes may be coordinately regulated. In Dnmt3L mutant embryos that lack maternal germ line methylation imprints, we show that Ddc is overexpressed and Grb10 is silenced. Their imprinting is therefore dependent on maternal germ line methylation, but the mechanism at Ddc does not appear to involve differential methylation of the Ddc_exon1a promoter region and may instead be provided by the oocyte mark at Grb10. Our analysis of Ddc redefines the imprinted Grb10 domain on mouse proximal chromosome 11 and identifies Ddc_exon1a as the first example of a heart-specific imprinted gene.


PLoS Genetics ◽  
2005 ◽  
Vol preprint (2006) ◽  
pp. e20
Author(s):  
Andrew J. Wood ◽  
Roland G Roberts ◽  
David Monk ◽  
Gudrun E Moore ◽  
Reiner Schulz ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4523-4530
Author(s):  
U Hellmann-Blumberg ◽  
M F Hintz ◽  
J M Gatewood ◽  
C W Schmid

Alu repeats are especially rich in CpG dinucleotides, the principal target sites for DNA methylation in eukaryotes. The methylation state of Alus in different human tissues is investigated by simple, direct genomic blot analysis exploiting recent theoretical and practical advances concerning Alu sequence evolution. Whereas Alus are almost completely methylated in somatic tissues such as spleen, they are hypomethylated in the male germ line and tissues which depend on the differential expression of the paternal genome complement for development. In particular, we have identified a subset enriched in young Alus whose CpGs appear to be almost completely unmethylated in sperm DNA. The existence of this subset potentially explains the conservation of CpG dinucleotides in active Alu source genes. These profound, sequence-specific developmental changes in the methylation state of Alu repeats suggest a function for Alu sequences at the DNA level, such as a role in genomic imprinting.


PLoS Genetics ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. e20 ◽  
Author(s):  
Andrew J Wood ◽  
Roland G Roberts ◽  
David Monk ◽  
Gudrun E Moore ◽  
Reiner Schulz ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4523-4530 ◽  
Author(s):  
U Hellmann-Blumberg ◽  
M F Hintz ◽  
J M Gatewood ◽  
C W Schmid

Alu repeats are especially rich in CpG dinucleotides, the principal target sites for DNA methylation in eukaryotes. The methylation state of Alus in different human tissues is investigated by simple, direct genomic blot analysis exploiting recent theoretical and practical advances concerning Alu sequence evolution. Whereas Alus are almost completely methylated in somatic tissues such as spleen, they are hypomethylated in the male germ line and tissues which depend on the differential expression of the paternal genome complement for development. In particular, we have identified a subset enriched in young Alus whose CpGs appear to be almost completely unmethylated in sperm DNA. The existence of this subset potentially explains the conservation of CpG dinucleotides in active Alu source genes. These profound, sequence-specific developmental changes in the methylation state of Alu repeats suggest a function for Alu sequences at the DNA level, such as a role in genomic imprinting.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2393-2393
Author(s):  
J Heo ◽  
Dong Myung Shin ◽  
Kasia Mierzejewska ◽  
Malwina Suszynska ◽  
Janina Ratajczak ◽  
...  

Abstract Background One of the most intriguing questions in stem cell biology is whether human umbilical cord blood (UCB) contains early-development stem cells that express markers of pluripotency and thus could be employed in regenerative medicine. Several groups have reported mRNAs for genes regulating stem cell pluripotency, such as Oct-4A, Nanog, and SSEA-1, in UCB cells. However, detection of the Oct-4A transcript may be hampered by the presence of several pseudogenes and Oct-4B isoform, which is not related to stem cell pluripotency. Another important question is: why are these primitive stem cells that are present in UCB highly quiescent and relatively resistant to ex vivo expansion? We previously identified a population of Oct-4+ CD133+Lin–CD45– cells in human UCB (Leukemia 2007;21:297–303) that may become specified into long-term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278) and mesenchymal stem cells (Stem Cell & Dev. 2013;22:622). These Oct-4+CD133+Lin–CD45– cells present in UCB correspond to a population of murine Oct-4+Sca-1+Lin+CD45– cells that remain quiescent in bone marrow because of epigenetic modification of parentally imprinted genes, including the Igf-2-H19 tandem gene (Leukemia 2009;23:2042). The quiescence of these cells has been explained by erasure of imprinting in the regulatory differentially methylated region (DMR) at the Igf2-H19 locus. In appropriate animal models, these small cells also give rise to LT-HSCs (Exp. Hematol 2011;3:225), mesenchymal stem cells (Stem CellsDev 2010;19:1557), and lung epithelium (Stem Cells2013;doi: 10.1002/stem.1413). Moreover, as we demonstrated, the epigenetic reversal of the maternal type of imprinting to the somatic type in the DMR for the Igf2-H19 locus, which is necessary to maintain balanced expression between insulin-like growth factor 2 (Igf-2) and noncoding H19 RNA (precursor for several inhibitory miRNAs) from paternal and maternal chromosomes, respectively, is required for these cells to enter the cell cycle. The crucial role of Igf2-H19 imprinting in quiescence of the most-primitive stem cells in murine BM has been very recently confirmed by another group (Nature 2013, doi: 10.1038/nature12303). Aim of the study To address whether human UCB Oct-4± CD133±Lin–CD45– cells truly express genes regulating pluripotency, we examined the DNA methylation state of the promoters for pluripotency/germ-line genes (Oct4, Nanog, and Sall4) and of the DMR for Igf2-H19. Materials and Methods UCB CD133+Lin–CD45– cells were isolated by multiparameter fluorescence-activated cell sorting (FACS) after intra-cellular staining for Oct4 protein in lineage-depleted human UCB mononuclear cells. Bisulfide modification of DNA followed by sequencing was employed to evaluate the methylation state of CpG islands in the promoters for Oct-4, Nanog, and Sall4 as well as in the DMR for the Igf2-H19 locus. Salient Results We observed that Oct4, Nanog, and Sall4 promoters in UCB Oct-4+CD133+Lin–CD45– cells were demethylated to a similar degree as the human teratocarcinoma NTERA2, which is evidence for true expression of these genes. Furthermore, in human UCB we observed Oct-4+CD133+Lin–CD45– cells that, like their murine counterparts, erase the imprinting in the DMR at the Igf2-H19 locus, which demonstrates that genomic imprinting could be a key mechanism for maintaining the quiescence of these cells. This imprinting data was subsequently confirmed by RQ-PCR analysis of gene expression, showing downregulation of autocrine Igf-2 and upregulation of noncoding H19 RNA. Conclusion Our methylation studies of the promoters for pluripotency/germ-line genes (Oct4, Nanog, and Sall4) provide for the first time strong molecular evidence that UCB contains cells that truly express pluripotent stem cell markers. Moreover, molecular analysis of the methylation state in the DMR for the Igf2-H19 locus also explains for the first time how the quiescent state of these cells is regulated by changes in parental imprinting at the Igf2-H19 locus. Thus, elucidation of this mechanism that controls and modifies genomic imprinting in VSELs will be crucial for developing strategies to expand these cells and employ them more efficiently in regenerative medicine and we are currently working on this. Disclosures: Ratajczak: Neostem Inc.: Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document