alu sequence
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 5)

H-INDEX

21
(FIVE YEARS 2)

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rahul Khatri ◽  
Sybille Mazurek ◽  
Sebastian Friedrich Petry ◽  
Thomas Linn

Abstract Background Mesenchymal stem cells (MSC) are non-haematopoietic, fibroblast-like multipotent stromal cells. In the injured pancreas, these cells are assumed to secrete growth factors and immunomodulatory molecules, which facilitate the regeneration of pre-existing β-cells. However, when MSC are delivered intravenously, their majority is entrapped in the lungs and does not reach the pancreas. Therefore, the aim of this investigation was to compare the regenerative support of hTERT-MSC (human telomerase reverse transcriptase mesenchymal stem cells) via intrapancreatic (IPR) and intravenous route (IVR). Methods hTERT-MSC were administered by IPR and IVR to 50% pancreatectomized NMRI nude mice. After eight days, blood glucose level, body weight, and residual pancreatic weight were measured. Proliferating pancreatic β-cells were labelled and identified with bromodeoxyuridine (BrdU) in vivo. The number of residual islets and the frequency of proliferating β-cells were compared in different groups with sequential pancreatic sections. The pancreatic insulin content was evaluated by enzyme-linked immunosorbent assay (ELISA) and the presence of hTERT-MSC with human Alu sequence. Murine gene expression of growth factors, β-cell specific molecules and proinflammatory cytokines were inspected by real-time polymerase chain reaction (RT-PCR) and Western blot. Results This study evaluated the regenerative potential of the murine pancreas post-hTERT-MSC administration through the intrapancreatic (IPR) and intravenous route (IVR). Both routes of hTERT-MSC transplantation (IVR and IPR) increased the incorporation of BrdU by pancreatic β-cells compared to control. MSC induced epidermal growth factor (EGF) expression and inhibited proinflammatory cytokines (IFN-γ and TNF-α). FOXA2 and PDX-1 characteristics for pancreatic progenitor cells were activated via AKT/ PDX-1/ FoxO1 signalling pathway. Conclusion The infusion of hTERT-MSC after partial pancreatectomy (Px) through the IVR and IPR facilitated the proliferation of autochthonous pancreatic β-cells and provided evidence for a regenerative influence of MSC on the endocrine pancreas. Moderate benefit of IPR over IVR was observed which could be a new treatment option for preventing diabetes mellitus after pancreas surgery.


2020 ◽  
Vol 7 (6) ◽  
pp. 200222 ◽  
Author(s):  
Alan Herbert

ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.


2019 ◽  
Vol 20 (1) ◽  
pp. 192 ◽  
Author(s):  
Kengo Iwasaki ◽  
Keiko Akazawa ◽  
Mizuki Nagata ◽  
Motohiro Komaki ◽  
Izumi Honda ◽  
...  

Periodontal disease is chronic inflammation that leads to the destruction of tooth-supporting periodontal tissues. We devised a novel method (“cell transfer technology”) to transfer cells onto a scaffold surface and reported the potential of the technique for regenerative medicine. The aim of this study is to examine the efficacy of this technique in periodontal regeneration and the fate of transplanted cells. Human periodontal ligament stem cells (PDLSCs) were transferred to decellularized amniotic membrane and transplanted into periodontal defects in rats. Regeneration of tissues was examined by microcomputed tomography and histological observation. The fate of transplanted PDLSCs was traced using PKH26 and human Alu sequence detection by PCR. Imaging showed more bone in PDLSC-transplanted defects than those in control (amnion only). Histological examination confirmed the enhanced periodontal tissue formation in PDLSC defects. New formation of cementum, periodontal ligament, and bone were prominently observed in PDLSC defects. PKH26-labeled PDLSCs were found at limited areas in regenerated periodontal tissues. Human Alu sequence detection revealed that the level of Alu sequence was not increased, but rather decreased. This study describes a novel stem cell transplantation strategy for periodontal disease using the cell transfer technology and offers new insight for cell-based periodontal regeneration.


2017 ◽  
Vol 117 (10) ◽  
pp. 1908-1918 ◽  
Author(s):  
Elisa Rossi ◽  
Céline Goyard ◽  
Audrey Cras ◽  
Blandine Dizier ◽  
Nour Bacha ◽  
...  

SummaryEndothelial colony-forming cells (ECFCs) are progenitor cells committed to endothelial lineages and have robust vasculogenic properties. Mesenchymal stem cells (MSCs) have been described to support ECFC-mediated angiogenic processes in various matrices. However, MSC-ECFC interactions in hind limb ischemia (HLI) are largely unknown. Here we examined whether co-administration of ECFCs and MSCs bolsters vasculogenic activity in nude mice with HLI. In addition, as we have previously shown that endoglin is a key adhesion molecule, we evaluated its involvement in ECFC/MSC interaction. Foot perfusion increased on day 7 after ECFC injection and was even better at 14 days. Co-administration of MSCs significantly increased vessel density and foot perfusion on day 7 but the differences were no longer significant at day 14. Analysis of mouse and human CD31, and in situ hybridization of the human ALU sequence, showed enhanced capillary density in ECFC+MSC mice. When ECFCs were silenced for endoglin, coinjection with MSCs led to lower vessel density and foot perfusion at both 7 and 14 days (p<0.001). Endoglin silencing in ECFCs did not affect MSC differentiation into perivascular cells or other mesenchymal lineages. Endoglin silencing markedly inhibited ECFC adhesion to MSCs. Thus, MSCs, when combined with ECFCs, accelerate muscle recovery in a mouse model of hind limb ischemia, through an endoglindependent mechanism.Supplementary Material to this article is available online at www.thrombosis-online.com.


2016 ◽  
Vol 1 (4) ◽  
pp. 75-76
Author(s):  
Abolfazl Movafagh

Genomic, proteomic, transcriptomic, and epigenomic analyses of human tumors indicate that there are thousands of anomalies within each cancer genome compared to matched normal tissue. Based on these analyses it is evident that there are many undiscovered genetic drivers of cancer. Performing an unbiased forward genetic screen in human provides the tools to generate tumors and analyze their genetic composition, while reducing the background of passenger mutations. The transposon system is one such method that can be inserted throughout the genome by the transposable element. A transposable element or jumping genes (TE or transposon) is a DNA sequence that can change its position within a genome, sometimes creating or reversing mutations and altering the cell’s genome size. Transposable elements make up a large fraction of the genome and are responsible for much of the mass of DNA in a eukaryotic cell. There are at least two classes of TEs: Class I TEs or retrotransposons generally function via reverse transcr ption, while Class II TEs or DNA transposons encode the protein transposase, which they require for insertion and excision, and some of these TEs also encode other proteins. The most common transposable element in humans is the Alu sequence. It is approximately 300 bases long and can be found between 300,000 and one million times in the human genome. Alu alone is estimated to make up 15–17% of the human genome. Transposon s are mutagens and their movements are often the causes of genetic disease. They can damage the genome of their host cell in different ways. A transposon or a retrotransposon that inserts itself into a functional gene will most likely disable that gene causing cancers. After a DNA transposon leaves a gene, the resulting gap will probably not repaired correctly.


2016 ◽  
Vol 62 (5) ◽  
pp. 535-543 ◽  
Author(s):  
A.V. Sekridova ◽  
A.M. Varizhuk ◽  
O.N. Tatarinova ◽  
V.V. Severov ◽  
N.A. Barinov ◽  
...  

In this paper, we report results of systematic studies of conformational polymorphism of G-rich DNA fragments from Alu repeats. Alu retrotransposones are primate-specific short interspersed elements. Using the Alu sequence from the prooncogen bcl2 intron and the consensus AluSx sequence as representative examples, we determined characteristic Alu sites that are capable of adopting G-quadruplex (GQ) conformations (i.e., potential quadruplex sites – PQSAlu), and demonstrated by bioinformatics methods that those sites are Alu-specific in the human genome. Genomic frequencies of PQSAlu were assessed (~1/10000 b.p.). The sites were found to be characteristic of young (active) Alu families (Alu-Y). A recombinant DNA sequence bearing the Alu element from the human bcl2 gene (304 b.p.) and its PQS-mutant (Alu-PQS) were constructed. The formation of noncanonical structures in Alubcl2 dsDNA and the absence of such structures in the case of Alu-PQS were shown using DMS-footprinting and AFM microscopy. Expression vectors bearing wild-type and mutant Alu insertions in the promoter regions were obtained, and the effects of these insertions on the expression of the reporter gene in НЕК293 and HeLa cell lines were compared. Our findings on the spatial organization of Alu repeats may provide insight into the mechanisms of genomic rearrangements which underlie many oncological and neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document