scholarly journals Recognition of the high affinity binding site in rev-response element RNA by the Human Immunodeficiency Virus type-1 rev protein

1992 ◽  
Vol 20 (24) ◽  
pp. 6465-6472 ◽  
Author(s):  
Shigenori Iwai ◽  
Clare Pritchard ◽  
Derek A. Mann ◽  
Jonathan Karn ◽  
Michael J. Gait
2000 ◽  
Vol 20 (18) ◽  
pp. 6958-6969 ◽  
Author(s):  
Mitchell E. Garber ◽  
Timothy P. Mayall ◽  
Eric M. Suess ◽  
Jill Meisenhelder ◽  
Nancy E. Thompson ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Tat interacts with cyclin T1 (CycT1), a regulatory partner of CDK9 in the positive transcription elongation factor (P-TEFb) complex, and binds cooperatively with CycT1 to TAR RNA to recruit P-TEFb and promote transcription elongation. We show here that Tat also stimulates phosphorylation of affinity-purified core RNA polymerase II and glutathioneS-transferase–C-terminal-domain substrates by CycT1-CDK9, but not CycH-CDK7, in vitro. Interestingly, incubation of recombinant Tat–P-TEFb complexes with ATP enhanced binding to TAR RNA dramatically, and the C-terminal half of CycT1 masked binding of Tat to TAR RNA in the absence of ATP. ATP incubation lead to autophosphorylation of CDK9 at multiple C-terminal Ser and Thr residues, and full-length CycT1 (amino acids 728) [CycT1(1–728)], but not truncated CycT1(1–303), was also phosphorylated by CDK9. P-TEFb complexes containing a catalytically inactive CDK9 mutant (D167N) bound TAR RNA weakly and independently of ATP, as did a C-terminal truncated CDK9 mutant that was catalytically active but unable to undergo autophosphorylation. Analysis of different Tat proteins revealed that the 101-amino-acid SF2 HIV-1 Tat was unable to bind TAR with CycT1(1–303) in the absence of phosphorylated CDK9, whereas unphosphorylated CDK9 strongly blocked binding of HIV-2 Tat to TAR RNA in a manner that was reversed upon autophosphorylation. Replacement of CDK9 phosphorylation sites with negatively charged residues restored binding of CycT1(1–303)-D167N-Tat, and rendered D167N a more potent inhibitor of transcription in vitro. Taken together, these results demonstrate that CDK9 phosphorylation is required for high-affinity binding of Tat–P-TEFb to TAR RNA and that the state of P-TEFb phosphorylation may regulate Tat transactivation in vivo.


Nature ◽  
1985 ◽  
Vol 315 (6016) ◽  
pp. 254-254
Author(s):  
L. Hennighausen ◽  
U. Siebenlist ◽  
D. Danner ◽  
P. Leder ◽  
D. Rawlins ◽  
...  

1990 ◽  
Vol 258 (4) ◽  
pp. E562-E568
Author(s):  
Y. Okabayashi ◽  
M. Otsuki ◽  
T. Nakamura ◽  
M. Koide ◽  
H. Hasegawa ◽  
...  

We investigated the regulatory effect of cholecystokinin (CCK) on subsequent insulin binding to pancreatic acinar cells. Rat isolated acini were preincubated with various concentrations of CCK octapeptide (CCK-8) at 37 degrees C. Acini were then washed, resuspended in the binding buffer, and incubated with 8.3 pM 125I-labeled insulin for 60 min at 37 degrees C. Pretreatment with CCK-8 caused inhibition of subsequent 125I-insulin binding that was time and concentration dependent. Significant inhibition was observed with 3 pM CCK-8. Computer analysis of the competition-inhibition study with a nonlinear least-squares curve-fitting program revealed that CCK-8 pretreatment of acini reduced the receptor affinity of the high-affinity binding site. This inhibitory action of CCK-8 was not due to the alteration in degradation or internalization of the tracer. When acini were pretreated with 100 pM CCK-8 for 120 min at 4 degrees C, a reduction in the receptor affinity of the high-affinity binding site was also observed. In pancreatic membrane prepared from acini preincubated with 100 pM CCK-8 for 120 min at 37 degrees C, displacement of 125I-insulin (83 pM) by unlabeled insulin (24 degrees C, 1 h) revealed that CCK-8 inhibited 125I-insulin binding by altering the receptor affinity of the high-affinity binding site. In acinar preparations the inhibitory effect of CCK-8 on 125I-insulin binding was abolished when acini were preincubated with CCK-8 and CCK receptor antagonist L 374718 at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document