scholarly journals The DNA binding affinity ofHhalmethylase is increased by a single amino acid substitution in the catalytic center

1993 ◽  
Vol 21 (10) ◽  
pp. 2459-2464 ◽  
Author(s):  
Sha Mi ◽  
Richard J. Roberts
2007 ◽  
Vol 27 (19) ◽  
pp. 6606-6614 ◽  
Author(s):  
Gentaro Yasuda ◽  
Ryotaro Nishi ◽  
Eriko Watanabe ◽  
Toshio Mori ◽  
Shigenori Iwai ◽  
...  

ABSTRACT Xeroderma pigmentosum group C (XPC) protein plays an essential role in DNA damage recognition in mammalian global genome nucleotide excision repair (NER). Here, we analyze the functional basis of NER inactivation caused by a single amino acid substitution (Trp to Ser at position 690) in XPC, previously identified in the XPC patient XP13PV. The Trp690Ser change dramatically affects the in vivo stability of the XPC protein, thereby causing a significant reduction of its steady-state level in XP13PV fibroblasts. Despite normal heterotrimeric complex formation and physical interactions with other NER factors, the mutant XPC protein lacks binding affinity for both undamaged and damaged DNA. Thus, this single amino acid substitution is sufficient to compromise XPC function through both quantitative and qualitative alterations of the protein. Although the mutant XPC fails to recognize damaged DNA, it is still capable of accumulating in a UV-damaged DNA-binding protein (UV-DDB)-dependent manner to UV-damaged subnuclear domains. However, the NER factors transcription factor IIH and XPA failed to colocalize stably with the mutant XPC. As well as highlighting the importance of UV-DDB in recruiting XPC to UV-damaged sites, these findings demonstrate the role of DNA binding by XPC in the assembly of subsequent NER intermediate complexes.


1996 ◽  
Vol 5 (3) ◽  
pp. 542-545 ◽  
Author(s):  
Kunihiko Gekko ◽  
Youjiro Tamura ◽  
Eiji Ohmae ◽  
Hideyuki Hayashi ◽  
Hiroyuki Kagamiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document