ets domain
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 15)

H-INDEX

43
(FIVE YEARS 1)

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1135
Author(s):  
Fei Yu ◽  
Michael L. Ko ◽  
Gladys Y.-P. Ko

Diabetic retinopathy (DR) is a chronic complication associated with diabetes and the number one cause of blindness in working adults in the US. More than 90% of diabetic patients have obesity-associated type 2 diabetes (T2D), and 60% of T2D patients will develop DR. Photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. However, how diabetic insults cause photoreceptor apoptosis remains unclear. In this study, obesity-associated T2D mice and cultured photoreceptors were used to investigate how decreased microRNA-150 (miR-150) and its downstream target were involved in photoreceptor apoptosis. In the T2D retina, miR-150 was decreased with its target ETS-domain transcription factor (ELK1) and phosphorylated ELK1 at threonine 417 (pELK1T417) upregulated. In cultured photoreceptors, treatments with palmitic acid (PA), to mimic a high-fat environment, decreased miR-150 but upregulated ELK1, pELK1T417, and the translocation of pELK1T417 from the cytoplasm to the cell nucleus. Deletion of miR-150 (miR-150−/−) exacerbates T2D- or PA-induced photoreceptor apoptosis. Blocking the expression of ELK1 with small interfering RNA (siRNA) for Elk1 did not rescue PA-induced photoreceptor apoptosis. Translocation of pELK1T417 from cytoplasm-to-nucleus appears to be the key step of diabetic insult-elicited photoreceptor apoptosis.


Oncogene ◽  
2021 ◽  
Author(s):  
Megann A. Boone ◽  
Cenny Taslim ◽  
Jesse C. Crow ◽  
Julia Selich-Anderson ◽  
Andrea K. Byrum ◽  
...  

AbstractEwing sarcoma is an aggressive bone cancer of children and young adults defined by the presence of a chromosomal translocation: t(11;22)(q24;q12). The encoded protein, EWS/FLI, fuses the amino-terminal domain of EWS to the carboxyl-terminus of FLI. The EWS portion is an intrinsically disordered transcriptional regulatory domain, while the FLI portion contains an ETS DNA-binding domain and two flanking regions of unknown function. Early studies using non-Ewing sarcoma models provided conflicting information on the roles of each domain of FLI in EWS/FLI oncogenic function. We therefore sought to define the specific contributions of each FLI domain to EWS/FLI activity in a well-validated Ewing sarcoma model and, in doing so, to better understand Ewing sarcoma development mediated by the fusion protein. We analyzed a series of engineered EWS/FLI mutants with alterations in the FLI portion using a variety of assays. Fluorescence anisotropy, CUT&RUN, and ATAC-sequencing experiments revealed that the isolated ETS domain is sufficient to maintain the normal DNA-binding and chromatin accessibility function of EWS/FLI. In contrast, RNA-sequencing and soft agar colony formation assays revealed that the ETS domain alone was insufficient for transcriptional regulatory and oncogenic transformation functions of the fusion protein. We found that an additional alpha-helix immediately downstream of the ETS domain is required for full transcriptional regulation and EWS/FLI-mediated oncogenesis. These data demonstrate a previously unknown role for FLI in transcriptional regulation that is distinct from its DNA-binding activity. This activity is critical for the cancer-causing function of EWS/FLI and may lead to novel therapeutic approaches.


2021 ◽  
Vol 11 (2) ◽  
pp. 138
Author(s):  
Yigit Koray Babal ◽  
Basak Kandemir ◽  
Isil Aksan Kurnaz

The ETS domain family of transcription factors is involved in a number of biological processes, and is commonly misregulated in various forms of cancer. Using microarray datasets from patients with different grades of glioma, we have analyzed the expression profiles of various ETS genes, and have identified ETV1, ELK3, ETV4, ELF4, and ETV6 as novel biomarkers for the identification of different glioma grades. We have further analyzed the gene regulatory networks of ETS transcription factors and compared them to previous microarray studies, where Elk-1-VP16 or PEA3-VP16 were overexpressed in neuroblastoma cell lines, and we identify unique and common regulatory networks for these ETS proteins.


2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Melis Savasan Sogut ◽  
Chitra Venugopal ◽  
Basak Kandemir ◽  
Ugur Dag ◽  
Sujeivan Mahendram ◽  
...  

Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.


2020 ◽  
pp. jbc.RA120.014616
Author(s):  
Reyna Sara Quintero-Barceinas ◽  
Franziska Gehringer ◽  
Charles Ducker ◽  
Janice Saxton ◽  
Peter E. Shaw

The mitogen-responsive, ETS-domain transcription factor ELK-1 stimulates the expression of immediate early genes at the onset of the cell cycle and participates in early developmental programming. ELK-1 is subject to multiple levels of post-translational control, including phosphorylation, SUMOylation and ubiquitination. Recently, removal of mono-ubiquitin from the ELK-1 ETS-domain by the Ubiquitin Specific Protease USP17 was shown to augment ELK-1 transcriptional activity and promote cell proliferation. Here we have used co-immunoprecipitation experiments, protein turnover and ubiquitination assays, RNA-interference and gene expression analyses to examine the possibility that USP17 acts antagonistically with the F-box protein FBXO25, an E3 ubiquitin ligase previously shown to promote ELK-1 ubiquitination and degradation. Our data confirm that FBXO25 and ELK-1 interact in HEK293T cells and that FBXO25 is active towards Hand1 and HAX1, two of its other candidate substrates. However, our data indicate that FBXO25 neither promotes ubiquitination of ELK-1 nor impacts on its transcriptional activity and suggest that an E3 ubiquitin ligase other than FBXO25 regulates ELK-1 ubiquitination and function.


2020 ◽  
Author(s):  
Yuki Kishimoto ◽  
Iori Nishiura ◽  
Shunsuke Yuri ◽  
Nami Yamamoto ◽  
Masahito Ikawa ◽  
...  

AbstractThe Ets2 transcription factor has been implicated in various biological processes. An Ets2 mutant model, which lacks the DNA-binding domain (ETS domain), was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair.Here, we generated new Ets2 mutant models with deletions in exon 8 and with frame-shift mutations using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as previously reported. After rescuing with tetraploid complementation, homozygous mutant mice were generated, but these mice did not exhibit wavy hair phenotype. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 embryos. As this in-frame mutation contained the ETS domain, the exon 8-skipped Ets2 mRNA was likely translated into protein in the skin that complemented the Ets2 function. Thus, these Ets2 mutant models, depending on the cell types, exhibited novel phenotypes due to exon skipping and are expected to be useful in several fields of research.Summary statementNew Ets2 mutant models showed embryonic lethal phenotype by a placental abnormality but did not exhibit a wavy hair phenotype as a previous model.


Author(s):  
Chloe A. N. Gerak ◽  
Si Miao Zhang ◽  
Aruna D. Balgi ◽  
Ivan J. Sadowski ◽  
Richard B. Sessions ◽  
...  

AbstractETV6 is an ETS family transcriptional repressor for which head-to-tail polymerization of its PNT domain facilitates cooperative binding to DNA by its ETS domain. Chromosomal translocations frequently fuse the ETV6 PNT domain to one of several protein tyrosine kinases. The resulting chimeric oncoproteins undergo ligand-independent self-association, autophosphorylation, and aberrant stimulation of downstream signaling pathways leading to a variety of cancers. Currently, no small molecules inhibitors of ETV6 PNT domain polymerization are known and no assays targeting PNT domain polymerization have been described. In this study, we developed complementary experimental and computational approaches for identifying such inhibitory compounds. One mammalian cellular approach utilized a mutant PNT domain heterodimer system covalently attached to split Gaussia luciferase fragments. In this protein fragment complementation assay, inhibition of PNT domain heterodimerization reduces luminescence. A yeast assay took advantage of activation of the reporter HIS3 gene upon heterodimerization of mutant PNT domains fused to DNA-binding and transactivation domains. In this two-hybrid screen, inhibition of PNT domain heterodimerization prevents cell growth in medium lacking histidine. The Bristol University Docking Engine (BUDE) was used to identify virtual ligands from the ZINC8 library predicted to bind the PNT domain polymerization interfaces. Over 75 hits from these three assays were tested by NMR spectroscopy for binding to the purified ETV6 PNT domain. Although none were found to bind, lessons learned from this study may facilitate future approaches for developing therapeutics that act against ETV6 oncoproteins by disrupting PNT domain polymerization.


2020 ◽  
Author(s):  
Michael Ebeid ◽  
Sung-Ho Huh

AbstractMammalian cochlear development encompasses a series of morphological and molecular events that results in the formation of a highly intricate structure responsible for hearing. One remarkable event occurs during development is the cochlear lengthening that starts with cochlear outgrowth around E11 and continues throughout development. Different mechanisms contribute to this process including cochlear progenitor proliferation and convergent extension. We previously identified that FGF9 and FGF20 promote cochlear lengthening by regulating auditory sensory epithelial proliferation through FGFR1 and FGFR2 in the periotic mesenchyme. Here, we provide evidence that ETS-domain transcription factors ETV4 and ETV5 are downstream of mesenchymal FGF signaling to control cochlear lengthening. Next generation RNA sequencing identified that Etv1, Etv4 and Etv5 mRNAs are decreased in the Fgf9 and Fgf20 double mutant periotic mesenchyme. Deleting both Etv4 and Etv5 in periotic mesenchyme resulted in shortening of cochlear length but maintaining normal patterning of organ of Corti and density of hair cells and supporting cells. This recapitulates phenotype of mesenchymal-specific Fgfr1 and Fgfr2 deleted inner ear. Furthermore, analysis of Etv1/4/5 triple conditional mutants revealed that ETV1 does not contribute in this process. Our study reveals that ETV4 and ETV5 function downstream of mesenchymal FGF signaling to promote cochlear lengthening.


Sign in / Sign up

Export Citation Format

Share Document