scholarly journals Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae

1997 ◽  
Vol 25 (21) ◽  
pp. 4230-4234 ◽  
Author(s):  
L. Wu ◽  
F. Winston
1991 ◽  
Vol 11 (10) ◽  
pp. 5301-5311
Author(s):  
J A Brown ◽  
S G Holmes ◽  
M M Smith

The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.


2008 ◽  
Vol 7 (10) ◽  
pp. 1649-1660 ◽  
Author(s):  
Qiye He ◽  
Cailin Yu ◽  
Randall H. Morse

ABSTRACT The histone H3 amino terminus, but not that of H4, is required to prevent the constitutively bound activator Cha4 from remodeling chromatin and activating transcription at the CHA1 gene in Saccharomyces cerevisiae. Here we show that neither the modifiable lysine residues nor any specific region of the H3 tail is required for repression of CHA1. We then screened for histone H3 mutations that cause derepression of the uninduced CHA1 promoter and identified six mutants, three of which are also temperature-sensitive mutants and four of which exhibit a sin − phenotype. Histone mutant levels were similar to that of wild-type H3, and the mutations did not cause gross alterations in nucleosome structure. One specific and strongly derepressing mutation, H3 A111G, was examined in depth and found to cause a constitutively active chromatin configuration at the uninduced CHA1 promoter as well as at the ADH2 promoter. Transcriptional derepression and altered chromatin structure of the CHA1 promoter depend on the activator Cha4. These results indicate that modest perturbations in distinct regions of the nucleosome can substantially affect the repressive function of chromatin, allowing activation in the absence of a normal inducing signal (at CHA1) or of Swi/Snf (resulting in a sin − phenotype).


1995 ◽  
Vol 15 (4) ◽  
pp. 1999-2009 ◽  
Author(s):  
J N Hirschhorn ◽  
A L Bortvin ◽  
S L Ricupero-Hovasse ◽  
F Winston

Nucleosomes have been shown to repress transcription both in vitro and in vivo. However, the mechanisms by which this repression is overcome are only beginning to be understood. Recent evidence suggests that in the yeast Saccharomyces cerevisiae, many transcriptional activators require the SNF/SWI complex to overcome chromatin-mediated repression. We have identified a new class of mutations in the histone H2A-encoding gene HTA1 that causes transcriptional defects at the SNF/SWI-dependent gene SUC2. Some of the mutations are semidominant, and most of the predicted amino acid changes are in or near the N- and C-terminal regions of histone H2A. A deletion that removes the N-terminal tail of histone H2A also caused a decrease in SUC2 transcription. Strains carrying these histone mutations also exhibited defects in activation by LexA-GAL4, a SNF/SWI-dependent activator. However, these H2A mutants are phenotypically distinct from snf/swi mutants. First, not all SNF/SWI-dependent genes showed transcriptional defects in these histone mutants. Second, a suppressor of snf/swi mutations, spt6, did not suppress these histone mutations. Finally, unlike in snf/swi mutants, chromatin structure at the SUC2 promoter in these H2A mutants was in an active conformation. Thus, these H2A mutations seem to interfere with a transcription activation function downstream or independent of the SNF/SWI activity. Therefore, they may identify an additional step that is required to overcome repression by chromatin.


1984 ◽  
Vol 4 (5) ◽  
pp. 947-955 ◽  
Author(s):  
G Chisholm ◽  
T Cooper

We have isolated three cis-dominant mutations which dramatically enhance DUR1 ,2 gene expression in Saccharomyces cerevisiae. The mutant phenotype, which is expressed both in haploid and MATa/MAT alpha diploid strains, does not appear to be an alteration of the normal control system for this gene because its expression remained fully inducible and sensitive to nitrogen catabolite repression. Instead, we found much higher levels of DUR1 ,2-specific RNA under both uninduced and induced conditions, i.e., the overproduction trait was superimposed on normal regulation of the gene. The mutations seemed to affect gene expression in a unidirectional manner or to be specific for DUR1 ,2 gene expression, because other genes in proximity to the mutations were not affected. We feel that these mutations may alter the chromatin structure in the vicinity of the DUR1 ,2 upstream control sequences or, alternatively, may be Ty insertions which no longer possess the ROAM characteristics reported by others and ourselves.


1995 ◽  
Vol 15 (4) ◽  
pp. 1879-1888 ◽  
Author(s):  
K F O'Connell ◽  
Y Surdin-Kerjan ◽  
R E Baker

Saccharomyces cerevisiae general regulatory factor CP1 (encoded by the gene CEP1) is required for optimal chromosome segregation and methionine prototrophy. MET16-CYC1-lacZ reporter constructs were used to show that MET16 5'-flanking DNA contains a CP1-dependent upstream activation sequence (UAS). Activity of the UAS required an intact CP1-binding site, and the effects of cis-acting mutations on CP1 binding and UAS activity correlated. In most respects, MET16-CYC1-lacZ reporter gene expression mirrored that of chromosomal MET16; however, the endogenous gene was found to be activated in response to amino acid starvation (general control). The latter mechanism was both GCN4 and CP1 dependent. MET25 was also found to be activated by GCN4, albeit weakly. More importantly, MET25 transcription was strongly CP1 dependent in gcn4 backgrounds. The modulation of MET gene expression by GCN4 can explain discrepancies in the literature regarding CP1 dependence of MET gene transcription. Lastly, micrococcal nuclease digestion and indirect end labeling were used to analyze the chromatin structure of the MET16 locus in wild-type and cep1 cells. The results indicated that CP1 plays no major role in configuring chromatin structure in this region, although localized CP1-specific differences in nuclease sensitivity were detected.


2010 ◽  
Vol 44 (6) ◽  
pp. 856-869 ◽  
Author(s):  
S. A. Osipov ◽  
O. V. Preobrazhenskaya ◽  
V. L. Karpov

Sign in / Sign up

Export Citation Format

Share Document