scholarly journals Isolation of ribosomal protein-RNA complexes by nitrocellulose membrane filtration: equilibrium binding studies

1977 ◽  
Vol 4 (2) ◽  
pp. 491-499 ◽  
Author(s):  
Eleanor Spicer ◽  
Jean Schwarzbauer ◽  
Gary R. Craven
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gianluca Trinco ◽  
Valentina Arkhipova ◽  
Alisa A. Garaeva ◽  
Cedric A. J. Hutter ◽  
Markus A. Seeger ◽  
...  

AbstractIt is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s−1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Zachary Lee Johnson ◽  
Jun-Ho Lee ◽  
Kiyoun Lee ◽  
Minhee Lee ◽  
Do-Yeon Kwon ◽  
...  

Concentrative nucleoside transporters (CNTs) are responsible for cellular entry of nucleosides, which serve as precursors to nucleic acids and act as signaling molecules. CNTs also play a crucial role in the uptake of nucleoside-derived drugs, including anticancer and antiviral agents. Understanding how CNTs recognize and import their substrates could not only lead to a better understanding of nucleoside-related biological processes but also the design of nucleoside-derived drugs that can better reach their targets. Here, we present a combination of X-ray crystallographic and equilibrium-binding studies probing the molecular origins of nucleoside and nucleoside drug selectivity of a CNT from Vibrio cholerae. We then used this information in chemically modifying an anticancer drug so that it is better transported by and selective for a single human CNT subtype. This work provides proof of principle for utilizing transporter structural and functional information for the design of compounds that enter cells more efficiently and selectively.


1995 ◽  
Vol 310 (2) ◽  
pp. 427-431 ◽  
Author(s):  
S S Ahmad ◽  
R Rawala ◽  
W F Cheung ◽  
D W Stafford ◽  
P N Walsh

To study the structural requirements for factor IXa binding to platelets, we have carried out equilibrium binding studies with human factor IXa after replacing the second epidermal growth factor (EGF) domain by the corresponding polypeptide region of factor X. The chimeric protein, factor IX(Xegf2), and the wild-type, factor IXwt, produced in embryonic kidney cells 293 were radiolabelled with 125I and activated with factor XIa. Direct binding studies with thrombin-activated platelets showed normal stoichiometry and affinity of binding of factor IXawt in the presence of factor VIIIa (2 units/ml) and factor X (1.5 microM). However, under similar experimental conditions, factor IXa(Xegf2) was bound to a smaller number of sites (396 sites/platelet) with decreased affinity, i.e. a dissociation constant (Kd) of 1.4 nM, compared with normal factor IXa, factor IXaN (558 sites/platelet; Kd 0.67 nM), or factor IXawt (590 sites/platelet; Kd 0.61 nM). The concentrations of factor IXaN and factor IXawt required for half-maximal rates of factor-X activation were 0.63 nM and 0.7 nM, indicating a close correspondence of the Kd, app. for binding of factor IXawt to the factor-X activating complex on activated platelets to the Kd obtained in equilibrium binding studies. In contrast, kinetic parameters for factor-X activation by factor IXa(Xegf2) showed a decreased affinity (Kd 1.5 nM), in agreement with results of binding studies. These studies with factor IX(Xegf2) suggest that the EGF-2 domain may be important for specific high-affinity factor IXa binding to platelets in the presence of factor VIIIa and factor X.


Sign in / Sign up

Export Citation Format

Share Document