scholarly journals Deep sequencing of non-enzymatic RNA primer extension

2020 ◽  
Vol 48 (12) ◽  
pp. e70-e70 ◽  
Author(s):  
Daniel Duzdevich ◽  
Christopher E Carr ◽  
Jack W Szostak

Abstract Life emerging in an RNA world is expected to propagate RNA as hereditary information, requiring some form of primitive replication without enzymes. Non-enzymatic template-directed RNA primer extension is a model of the copying step in this posited form of replication. The sequence space accessed by primer extension dictates potential pathways to self-replication and, eventually, ribozymes. Which sequences can be accessed? What is the fidelity of the reaction? Does the recently illuminated mechanism of primer extension affect the distribution of sequences that can be copied? How do sequence features respond to experimental conditions and prebiotically relevant contexts? To help answer these and related questions, we here introduce a deep-sequencing methodology for studying RNA primer extension. We have designed and vetted special RNA constructs for this purpose, honed a protocol for sample preparation and developed custom software that analyzes sequencing data. We apply this new methodology to proof-of-concept controls, and demonstrate that it works as expected and reports on key features of the sequences accessed by primer extension.

2020 ◽  
Author(s):  
Daniel Duzdevich ◽  
Christopher E. Carr ◽  
Jack W. Szostak

ABSTRACTLife emerging in an RNA world is expected to propagate RNA as hereditary information, requiring some form of primitive replication without enzymes. Nonenzymatic template-directed RNA primer extension is a model of the polymerisation step in this posited form of replication. The sequence space accessed by primer extension dictates potential pathways to self-replication and, eventually, ribozymes. Which sequences can be accessed? What is the fidelity of the reaction? Does the recently-illuminated mechanism of primer extension affect the distribution of sequences that can be copied? How do sequence features respond to experimental conditions and prebiotically relevant contexts? To help answer these and related questions, we here introduce a deep-sequencing methodology for studying RNA primer extension. We have designed and vetted special RNA constructs for this purpose, honed a protocol for sample preparation and developed custom software that sorts and analyses raw sequencing data. We apply this new methodology to proof-of-concept controls, and demonstrate that it works as expected and reports on key features of the sequences accessed by primer extension.


2019 ◽  
Author(s):  
Lijun Zhou ◽  
Seohyun Chris Kim ◽  
Katherine H. Ho ◽  
Derek K. O’Flaherty ◽  
Constantin Giurgiu ◽  
...  

AbstractNon-enzymatic RNA self-replication is integral to the ‘RNA World’ hypothesis. Despite considerable progress in non-enzymatic template copying, true replication remains challenging due to the difficulty of separating the strands of the product duplex. Here, we report a prebiotically plausible solution to this problem in which short ‘invader’ oligonucleotides unwind an RNA duplex through a toehold/branch migration mechanism, allowing non-enzymatic primer extension on a template that was previously occupied by its complementary strand. Kinetic studies of single-step reactions suggest that following invader binding, branch migration results in a 2:3 partition of the template between open and closed states. Finally, we demonstrate continued primer extension with strand displacement by employing activated 3′-aminonucleotides, a more reactive proxy for ribonucleotides. Our study suggests that complete cycles of non-enzymatic replication of the primordial genetic material may have been catalyzed by short RNA oligonucleotides.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lijun Zhou ◽  
Seohyun Chris Kim ◽  
Katherine H Ho ◽  
Derek K O'Flaherty ◽  
Constantin Giurgiu ◽  
...  

Non-enzymatic RNA self-replication is integral to the emergence of the ‘RNA World’. Despite considerable progress in non-enzymatic template copying, demonstrating a full replication cycle remains challenging due to the difficulty of separating the strands of the product duplex. Here, we report a prebiotically plausible approach to strand displacement synthesis in which short ‘invader’ oligonucleotides unwind an RNA duplex through a toehold/branch migration mechanism, allowing non-enzymatic primer extension on a template that was previously occupied by its complementary strand. Kinetic studies of single-step reactions suggest that following invader binding, branch migration results in a 2:3 partition of the template between open and closed states. Finally, we demonstrate continued primer extension with strand displacement by employing activated 3′-aminonucleotides, a more reactive proxy for ribonucleotides. Our study suggests that complete cycles of non-enzymatic replication of the primordial genetic material may have been facilitated by short RNA oligonucleotides.


2012 ◽  
Vol 5 (1) ◽  
pp. 338
Author(s):  
Sharon Ben-Zvi ◽  
Adi Givati ◽  
Noam Shomron

2017 ◽  
Vol 26 ◽  
pp. 1-11 ◽  
Author(s):  
Molly M. Rathbun ◽  
Jennifer A. McElhoe ◽  
Walther Parson ◽  
Mitchell M. Holland

Biology ◽  
2012 ◽  
Vol 1 (2) ◽  
pp. 297-310 ◽  
Author(s):  
Xiaozeng Yang ◽  
Lei Li

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Julia M. Malinowska ◽  
Taina Palosaari ◽  
Jukka Sund ◽  
Donatella Carpi ◽  
Gavin R. Lloyd ◽  
...  

Regulatory bodies have started to recognise the value of in vitro screening and metabolomics as two types of new approach methodologies (NAMs) for chemical risk assessments, yet few high-throughput in vitro toxicometabolomics studies have been reported. A significant challenge is to implement automated sample preparation of the low biomass samples typically used for in vitro screening. Building on previous work, we have developed, characterised and demonstrated an automated sample preparation and analysis workflow for in vitro metabolomics of HepaRG cells in 96-well microplates using a Biomek i7 Hybrid Workstation (Beckman Coulter) and Orbitrap Elite (Thermo Scientific) high-resolution nanoelectrospray direct infusion mass spectrometry (nESI-DIMS), across polar metabolites and lipids. The experimental conditions evaluated included the day of metabolite extraction, order of extraction of samples in 96-well microplates, position of the 96-well microplate on the instrument’s deck and well location within a microplate. By using the median relative standard deviation (mRSD (%)) of spectral features, we have demonstrated good repeatability of the workflow (final mRSD < 30%) with a low percentage of features outside the threshold applied for statistical analysis. To improve the quality of the automated workflow further, small method modifications were made and then applied to a large cohort study (4860 sample infusions across three nESI-DIMS assays), which confirmed very high repeatability of the whole workflow from cell culturing to metabolite measurements, whilst providing a significant improvement in sample throughput. It is envisioned that the automated in vitro metabolomics workflow will help to advance the application of metabolomics (as a part of NAMs) in chemical safety, primarily as an approach for high throughput screening and prioritisation.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e16403 ◽  
Author(s):  
Seongho Ryu ◽  
Natasha Joshi ◽  
Kevin McDonnell ◽  
Jongchan Woo ◽  
Hyejin Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document