scholarly journals Target accessibility and signal specificity in live-cell detection of BMP-4 mRNA using molecular beacons

2008 ◽  
Vol 36 (5) ◽  
pp. e30-e30 ◽  
Author(s):  
W. J. Rhee ◽  
P. J. Santangelo ◽  
H. Jo ◽  
G. Bao
Author(s):  
Wonjong Rhee ◽  
Hanjoong Jo ◽  
Gang Bao

The ability to visualize mRNA in single living cells and monitor in real-time the changes of mRNA level and localization in response to shear flow can provide unprecedented opportunities for the molecular analysis of atherosclerosis. We carried out an extensive study of the design of molecular beacons to target BMP-4 mRNA, which plays important roles in proatherogenic development in response to unstable flow conditions. Specifically, we selected an optimal molecular beacon design, and found that the fluorescent intensity from targeting BMP-4 mRNA correlated well with the GFP signal after up-regulating BMP-4 and co-expressing GFP using adenovirus. The knock-down of BMP-4 mRNA using siRNA significantly reduced the beacon signal, further demonstrating detection specificity. We found that, due to target accessibility, molecular beacons designed with different target sequences gave very different signal levels, and establishing molecular beacon design rules has significant implications to live cell mRNA detections, especially to the studies of BMP-4 mRNA in endothelial cells under shear flow.


2018 ◽  
Author(s):  
Livia V. Bayer ◽  
Omar S. Omar ◽  
Diana P. Bratu ◽  
Irina E. Catrina

ABSTRACTMolecular beacons are nucleic acid oligomers labeled with a fluorophore and a quencher that fold in a hairpin-shaped structure, which fluoresce only when bound to their target RNA. They are used for the visualization of endogenous mRNAs in live cells. Here, we report a Python program (PinMol) that designs molecular beacons best suited for live cell imaging by using structural information from secondary structures of the target RNA, predicted via energy minimization approaches. PinMol takes into account the accessibility of the targeted regions, as well as the inter- and intramolecular interactions of each selected probe. To demonstrate its applicability, we synthesized an oskar mRNA-specific molecular beacon (osk1236), which is selected by PinMol to target a more accessible region than a manually designed oskar-specific molecular beacon (osk2216). We previously demonstrated osk2216 to be efficient in detecting oskar mRNA in in vivo experiments. Here, we show that osk1236 outperformed osk2216 in live cell imaging experiments.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Cristiana Lungu ◽  
Sabine Pinter ◽  
Julian Broche ◽  
Philipp Rathert ◽  
Albert Jeltsch

Sign in / Sign up

Export Citation Format

Share Document