scholarly journals Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA

2014 ◽  
Vol 42 (20) ◽  
pp. 12523-12536 ◽  
Author(s):  
Sophie S. Nicod ◽  
Robert O. J. Weinzierl ◽  
Lynn Burchell ◽  
Andres Escalera-Maurer ◽  
Ellen H. James ◽  
...  
2000 ◽  
Vol 11 (5) ◽  
pp. 1753-1764 ◽  
Author(s):  
Sengyong Lee ◽  
Tage Carlson ◽  
Noah Christian ◽  
Kristi Lea ◽  
Jennifer Kedzie ◽  
...  

In vitro DNA-binding assays demonstrate that the heat shock transcription factor (HSF) from the yeast Saccharomyces cerevisiae can adopt an altered conformation when stressed. This conformation, reflected in a change in electrophoretic mobility, requires that two HSF trimers be bound to DNA. Single trimers do not show this change, which appears to represent an alteration in the cooperative interactions between trimers. HSF isolated from stressed cells displays a higher propensity to adopt this altered conformation. Purified HSF can be stimulated in vitro to undergo the conformational change by elevating the temperature or by exposing HSF to superoxide anion. Mutational analysis maps a region critical for this conformational change to the flexible loop between the minimal DNA-binding domain and the flexible linker that joins the DNA-binding domain to the trimerization domain. The significance of these findings is discussed in the context of the induction of the heat shock response by ischemic stroke, hypoxia, and recovery from anoxia, all known to stimulate the production of superoxide.


Biochemistry ◽  
2004 ◽  
Vol 43 (51) ◽  
pp. 16027-16035 ◽  
Author(s):  
Shinichiro Oka ◽  
Yasuhisa Shiraishi ◽  
Takuya Yoshida ◽  
Tadayasu Ohkubo ◽  
Yukio Sugiura ◽  
...  

1996 ◽  
Vol 236 (3) ◽  
pp. 911-921 ◽  
Author(s):  
Jurgen Schultheiss ◽  
Olaf Kunert ◽  
Uwe Gase ◽  
Klaus-Dieter Scharf ◽  
Lutz Nover ◽  
...  

2017 ◽  
Author(s):  
Jungeui Hong ◽  
Nathan Brandt ◽  
Ally Yang ◽  
Tim Hughes ◽  
David Gresham

Understanding the molecular basis of gene expression evolution is a central problem in evolutionary biology. However, connecting changes in gene expression to increased fitness, and identifying the functional basis of those changes, remains challenging. To study adaptive evolution of gene expression in real time, we performed long term experimental evolution (LTEE) of Saccharomyces cerevisiae (budding yeast) in ammonium-limited chemostats. Following several hundred generations of continuous selection we found significant divergence of nitrogen-responsive gene expression in lineages with increased fitness. In multiple independent lineages we found repeated selection for non-synonymous mutations in the zinc finger DNA binding domain of the activating transcription factor (TF), GAT1, that operates within incoherent feedforward loops to control expression of the nitrogen catabolite repression (NCR) regulon. Missense mutations in the DNA binding domain of GAT1 reduce its binding affinity for the GATAA consensus sequence in a promoter-specific manner, resulting in increased expression of ammonium permease genes via both direct and indirect effects, thereby conferring increased fitness. We find that altered transcriptional output of the NCR regulon results in antagonistic pleiotropy in alternate environments and that the DNA binding domain of GAT1 is subject to purifying selection in natural populations. Our study shows that adaptive evolution of gene expression can entail tuning expression output by quantitative changes in TF binding affinities while maintaining the overall topology of a gene regulatory network.


2001 ◽  
Vol 307 (5) ◽  
pp. 1395-1410 ◽  
Author(s):  
Wolfgang Fieber ◽  
Martin L. Schneider ◽  
Theresia Matt ◽  
Bernhard Kräutler ◽  
Robert Konrat ◽  
...  

1994 ◽  
Vol 22 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Luca Falciola ◽  
Alastair I.H. Murchie ◽  
David M.J. Lilley ◽  
Marco E. Bianchi

Sign in / Sign up

Export Citation Format

Share Document