scholarly journals Mixed Integer Linear Programming based machine learning approach identifiesregulatorsof telomerase in yeast

2016 ◽  
Vol 44 (10) ◽  
pp. e93-e93 ◽  
Author(s):  
Alexandra M. Poos ◽  
André Maicher ◽  
Anna K. Dieckmann ◽  
Marcus Oswald ◽  
Roland Eils ◽  
...  
Author(s):  
Álinson S. Xavier ◽  
Feng Qiu ◽  
Shabbir Ahmed

Security-constrained unit commitment (SCUC) is a fundamental problem in power systems and electricity markets. In practical settings, SCUC is repeatedly solved via mixed-integer linear programming (MIP), sometimes multiple times per day, with only minor changes in input data. In this work, we propose a number of machine learning techniques to effectively extract information from previously solved instances in order to significantly improve the computational performance of MIP solvers when solving similar instances in the future. Based on statistical data, we predict redundant constraints in the formulation, good initial feasible solutions, and affine subspaces where the optimal solution is likely to lie, leading to a significant reduction in problem size. Computational results on a diverse set of realistic and large-scale instances show that using the proposed techniques, SCUC can be solved on average 4.3 times faster with optimality guarantees and 10.2 times faster without optimality guarantees, with no observed reduction in solution quality. Out-of-distribution experiments provide evidence that the method is somewhat robust against data-set shift. Summary of Contribution. The paper describes a novel computational method, based on a combination of mixed-integer linear programming (MILP) and machine learning (ML), to solve a challenging and fundamental optimization problem in the energy sector. The method advances the state-of-the-art, not only for this particular problem, but also, more generally, in solving discrete optimization problems via ML. We expect that the techniques presented can be readily used by practitioners in the energy sector and adapted, by researchers in other fields, to other challenging operations research problems that are solved routinely.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 887
Author(s):  
Xianliang Cheng ◽  
Suzhen Feng ◽  
Yanxuan Huang ◽  
Jinwen Wang

Peak-shaving is a very efficient and practical strategy for a day-ahead hydropower scheduling in power systems, usually aiming to appropriately schedule hourly (or in less time interval) power generations of individual plants so as to smooth the load curve while enforcing the energy production target of each plant. Nowadays, the power marketization and booming development of renewable energy resources are complicating the constraints and diversifying the objectives, bringing challenges for the peak-shaving method to be more flexible and efficient. Without a pre-set or fixed peak-shaving order of plants, this paper formulates a new peak-shaving model based on the mixed integer linear programming (MILP) to solve the scheduling problem in an optimization way. Compared with the traditional peak-shaving methods that need to determine the order of plants to peak-shave the load curve one by one, the present model has better flexibility as it can handle the plant-based operating zones and prioritize the constraints and objectives more easily. With application to six cascaded hydropower reservoirs on the Lancang River in China, the model is tested efficient and practical in engineering perspective.


Sign in / Sign up

Export Citation Format

Share Document