NIMG-49. A PROSPECTIVE, MULTI-CENTRE TRIAL OF FET-PET IN GLIOBLASTOMA PATIENTS - THE TROG 18.06 FIG STUDY: KEY ASPECTS OF IMAGING AND RADIATION ONCOLOGY CREDENTIALING

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi140-vi140
Author(s):  
Eng-Siew Koh ◽  
Roslyn J Francis ◽  
Martin Ebert ◽  
Hui Gan ◽  
Sze Ting Lee ◽  
...  

Abstract The FIG study is a prospective non-randomised study now recruiting up to 210 newly diagnosed GBM participants across ten Australian sites. Study outcomes will address the role of [18F] fluoroethyl-L-tyrosine positron emission tomography (FET-PET) in radiotherapy (RT) planning, evaluation of post-treatment changes versus disease progression and prognostication. We describe here the methodology and preliminary outcomes for site credentialing. Eligible participants with GBM undergo FET-PET imaging at three time-points: FET-PET1-post-operative pre-chemo-RT, FET-PET2 acquired one month post-chemo-RT and FET-PET3 (+/-FDG-PET) triggered when clinical and/or radiological (MRI) progression is suspected. Dynamic and static FET-PET images are analysed qualitatively and quantitatively. Radiotherapy is as per standard care with the treating Radiation Oncologist (RO) blinded to FET-PET1. Site nuclear medicine (NM) physicians are required to delineate a biological target volume (BTV) based on FET-PET1 with hybrid RT volumes derived post-hoc. Pre-trial NM quality assurance comprises certification from the Australasian Radiopharmaceutical Trials Network encompassing FET-PET radiochemistry Quality Control and PET camera calibration. Site and central integrated workflows incorporating multi-modality image registration, target volume/region of interest contouring and analysis have been developed. NM benchmarking involves delineation of FET-PET BTVs in 3 cases with another 3 cases addressing response criteria interpretation harmonized across FET-PET, FDG-PET and MRI. Site ROs complete 3 cases involving standard and hybrid target volume delineation based on pre-derived FET-PET volumes. All NM and RO credentialing cases undergo central expert review. To date, of six sites which have submitted full credentialing data, 19/21 RO and 6/6 planning cases were passed. Of 72 NM cases, 18/72 (25%) required resubmission, primarily related to ensuring standardisation of background regions and time activity curve interpretation. The FIG study will be pivotal in establishing the role of FET-PET in GBM management. The robust NM and RO credentialing program will build capacity and expertise in FET-PET production, acquisition and image interpretation.

2008 ◽  
Vol 70 (5) ◽  
pp. 1423-1426 ◽  
Author(s):  
Maria Chiara Bassi ◽  
Lucia Turri ◽  
Gianmauro Sacchetti ◽  
Gianfranco Loi ◽  
Barbara Cannillo ◽  
...  

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 7574-7574 ◽  
Author(s):  
Y. Xu ◽  
S. Ma ◽  
D. Yu ◽  
J. Wang ◽  
L. Zhang ◽  
...  

7574 Background: 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) /computed tomography (CT) has a potential improvement for staging and radiation treatment (RT) planning of various tumor sites. But from a clinical standpoint, the open questions are essentially the following: to what extent does PET/CT change the target volume? Can PET/CT reduce inter-observer variability in target volume delineation? We analyzed the use of FDG-PET/ CT images for staging and evaluated the impact of FDG- PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. Methods: Twenty-three patients with stage I-III NSCLC were enrolled in this pilot study and were treated with fractionated RT based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within 2 weeks prior to RT. PET and CT data sets were sent to the treatment planning system Pinnacle through compact disc. The CT and PET images were subsequently fused by means of a dedicated radiation treatment planning system. Gross Tumor Volume (GTV) was contoured by four radiation oncologists respectively on CT (CT-GTV) and PET/CT images (PET/CT-GTV). The resulting volumes were analyzed and compared. Results: For the first phase, two radiation oncologists outlined together the contours achieving a final consensus. Based on PET/CT, changes in TNM categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) by comparison with CT targeting. The most prominent changes in GTV have been observed in cases with atelectasis. For the second phase was four intraobserver variation in delineating tumor volumes. The mean ratio of largest to smallest CT-based GTV was 2.31 (range 1.01–5.96). The addition of the PET data reduced the mean ratio to 1.46 (range 1.12–2.27). Conclusions: PET/CT fusion images could have a potential impact on both tumor staging and treatment planning. Implementing matched PET/CT reduced observer variation in delineating tumor volumes significantly with respect to CT only. [Table: see text]


2019 ◽  
Vol 61 ◽  
pp. 85-93 ◽  
Author(s):  
Craig Parkinson ◽  
Mererid Evans ◽  
Teresa Guerrero-Urbano ◽  
Andriana Michaelidou ◽  
Lucy Pike ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document