radiation treatment planning
Recently Published Documents


TOTAL DOCUMENTS

584
(FIVE YEARS 55)

H-INDEX

41
(FIVE YEARS 1)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi143-vi143
Author(s):  
Haley Perlow ◽  
Michael Yang ◽  
Michael Siedow ◽  
Yevgeniya Gokun ◽  
Joseph McElroy ◽  
...  

Abstract PURPOSE Radiation treatment planning for meningiomas conventionally involves MRI contrast enhanced images to define residual tumor. However, the gross tumor volume may be difficult to delineate for patients with a meningioma in the skull base, sagittal sinus, or post resection. Advanced PET imaging using 68(GA)DOTATATE PET, which has been shown to be more sensitive and specific than MRI imaging, can be used for target volume delineation in these circumstances. We hypothesize that 68(GA)DOTATATE PET scan-based treatment planning will lead to smaller radiation volumes and will detect additional areas of disease compared to standard MRI alone. METHODS Our data evaluated retrospective, deidentified, and blinded gross tumor volume (GTV) contour delineation with 7 CNS specialists (3 neuroradiologists, 4 CNS radiation oncologists) for 26 patients diagnosed with a meningioma who received both a 68(GA)DOTATATE PET and an MRI for radiation treatment planning. Both the MRI and the PET were non-sequentially contoured by each physician for each patient. RESULTS The mean MRI volume for each physician ranged from 24.14-35.52 ccs. The mean PET volume for each physician ranged from 10.59-20.54 ccs. The PET volumes were significantly smaller for 6 out of the 7 physicians. In addition, 7/26 (27%) patients had new non-adjacent areas contoured on PET by at least 6 of the 7 physicians that were not contoured by these physicians on the corresponding MRI. These new areas would not have been in the traditional MRI based volumes. CONCLUSION Our study supports that 68(GA)DOTATATE PET imaging can help radiation oncologist create smaller and more precise radiation treatment volumes. Utilization of 68(GA)DOTATATE PET may find undetected areas of disease which in turn can improve local control and progression free survival. 68(GA)DOTATATE PET guided treatment planning should be studied prospectively.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4707
Author(s):  
Maciej J. Pelak ◽  
Birgit Flechl ◽  
Marta Mumot ◽  
Razvan Galalae ◽  
Slavisa Tubin ◽  
...  

Grade I meningioma is the most common intracranial tumor in adults. The standard imaging for its radiation treatment planning is MRI, and [68Ga]1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated PET/CT can further improve delineation. We investigated the impact of PET/CT on interobserver variability in identifying the tumor in 30 anonymized patients. Four radiation oncologists independently contoured residual tumor volume, first using only MRI and subsequently with the addition of PET/CT. Conformity indices (CIs) were calculated between common volumes, observer pairs and compared to the volumes previously used. Overall, 29/30 tumors (96.6%) showed [68Ga]Ga-DOTA avidity. With help of PET/CT, the participants identified six cases with new lesions not recognized in MRI, including two where new findings would critically alter the target volume used for radiation. The PET/CT-aided series demonstrated superior conformity, as compared to MRI-only between observer pairs (median CI = 0.58 vs. 0.49; p = 0.002), common volumes (CI = 0.34; vs. 0.29; p = 0.002) and matched better the reference volumes actually used for patient treatment (CI = 0.55 vs. 0.39; p = 0.008). Cis in the PET/CT-aided series were lower for meningiomas outside of the skull base (0.2 vs. 0.44; p = 0.03). We conclude that SSTR2 receptor-targeted PET/CT is a valuable tool for planning particle therapy of incompletely resected meningioma. It serves both as a workup procedure and an aid for delineation process that reduces the likelihood of marginal misses.


2021 ◽  
Author(s):  
Constantin Lapa ◽  
Ursula Nestle ◽  
Nathalie L. Albert ◽  
Christian Baues ◽  
Ambros Beer ◽  
...  

AbstractThis comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.


Author(s):  
Shadab Momin ◽  
Yabo Fu ◽  
Yang Lei ◽  
Justin Roper ◽  
Jeffrey D. Bradley ◽  
...  

2021 ◽  
Author(s):  
Raphael Y. Jakubovic

The objective of high dose stereotactic radiotherapy regardless of application is to treat the malignancy while minimizing the radiation dose to the surrounding healthy tissue. In the context of spinal tumours this paradigm is difficult since the rigid dose tolerance of the spinal cord precludes optimal dose coverage of the epidural disease. To achieve adequate coverage spine separation surgery is performed, increasing the distance from the spinal cord to the malignancy and facilitating adequate radiation treatment planning. This approach has been validated with delivery of maximum tolerable dose and local control rates over 90%. The objective of this dissertation is to establish the feasibility of intraoperative, dose guided, spine separation surgery. In the current clinical context, spine separation surgery is performed prior to radiation treatment planning and contours are placed based on postoperative resected tumour volumes. The extent of surgical resection is not dictated by the dosimetric constraints of the spinal cord and relies solely on the clinical expertise of the operating neurosurgeon. Further, though a skilled surgeon can perform precise tumour debulking with or without the aid of millimetre resolution neuronavigation devices, determination of surgical debulking progress with accuracy comparable to treatment delivery cannot be recognized without intraoperative imaging. To achieve this goal, we introduced pre-surgical dosimetric planning with tracked high frequency micro-ultrasound imaging into the operating theatre to inform the surgeon of the surgical progress while considering the dosimetric objectives. In this dissertation, we assessed the dosimetric advantage of spine separation surgery on a millimetre by millimetre basis in a retrospective simulation study. Feasibility of intraoperative navigation with submillimetre resolution was established by quantifying the application accuracy of surgical navigation in the context of cranial and spinal surgery. Accuracy quantification was performed, assessing our revolutionary optical topographical imaging system and benchmarked versus existing commercially available neuronavigation systems. Finally, to establish feasibility of radiation dose planning guided surgical resection we integrated a high frequency micro-ultrasound system into the operating theater during spine separation surgery. Thus, by implementing sub-millimetre high frequency micro-ultrasound imaging and neuronavigation, incremental gains towards establishing the feasibility of in traoperative dose planning by iteratively updating the extent of tumour resection were recognized.


2021 ◽  
Author(s):  
Raphael Y. Jakubovic

The objective of high dose stereotactic radiotherapy regardless of application is to treat the malignancy while minimizing the radiation dose to the surrounding healthy tissue. In the context of spinal tumours this paradigm is difficult since the rigid dose tolerance of the spinal cord precludes optimal dose coverage of the epidural disease. To achieve adequate coverage spine separation surgery is performed, increasing the distance from the spinal cord to the malignancy and facilitating adequate radiation treatment planning. This approach has been validated with delivery of maximum tolerable dose and local control rates over 90%. The objective of this dissertation is to establish the feasibility of intraoperative, dose guided, spine separation surgery. In the current clinical context, spine separation surgery is performed prior to radiation treatment planning and contours are placed based on postoperative resected tumour volumes. The extent of surgical resection is not dictated by the dosimetric constraints of the spinal cord and relies solely on the clinical expertise of the operating neurosurgeon. Further, though a skilled surgeon can perform precise tumour debulking with or without the aid of millimetre resolution neuronavigation devices, determination of surgical debulking progress with accuracy comparable to treatment delivery cannot be recognized without intraoperative imaging. To achieve this goal, we introduced pre-surgical dosimetric planning with tracked high frequency micro-ultrasound imaging into the operating theatre to inform the surgeon of the surgical progress while considering the dosimetric objectives. In this dissertation, we assessed the dosimetric advantage of spine separation surgery on a millimetre by millimetre basis in a retrospective simulation study. Feasibility of intraoperative navigation with submillimetre resolution was established by quantifying the application accuracy of surgical navigation in the context of cranial and spinal surgery. Accuracy quantification was performed, assessing our revolutionary optical topographical imaging system and benchmarked versus existing commercially available neuronavigation systems. Finally, to establish feasibility of radiation dose planning guided surgical resection we integrated a high frequency micro-ultrasound system into the operating theater during spine separation surgery. Thus, by implementing sub-millimetre high frequency micro-ultrasound imaging and neuronavigation, incremental gains towards establishing the feasibility of in traoperative dose planning by iteratively updating the extent of tumour resection were recognized.


Sign in / Sign up

Export Citation Format

Share Document