Modulation of Nigrofugal and Pallidofugal Pathways in Deep Brain Stimulation for Parkinson Disease

Neurosurgery ◽  
2019 ◽  
Vol 86 (4) ◽  
pp. E387-E397 ◽  
Author(s):  
Josue M Avecillas-Chasin ◽  
Christopher R Honey

Abstract BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for patients with Parkinson disease (PD). OBJECTIVE To define the role of adjacent white matter stimulation in the effectiveness of STN-DBS. METHODS We retrospectively evaluated 43 patients with PD who received bilateral STN-DBS. The volumes of activated tissue were analyzed to obtain significant stimulation clusters predictive of 4 clinical outcomes: improvements in bradykinesia, rigidity, tremor, and reduction of dopaminergic medication. Tractography of the nigrofugal and pallidofugal pathways was performed. The significant clusters were used to calculate the involvement of the nigrofugal and pallidofugal pathways and the STN. RESULTS The clusters predictive of rigidity and tremor improvement were dorsal to the STN with most of the clusters outside of the STN. These clusters preferentially involved the pallidofugal pathways. The cluster predictive of bradykinesia improvement was located in the central part of the STN with an extension outside of the STN. The cluster predictive of dopaminergic medication reduction was located ventrolateral and caudal to the STN. These clusters preferentially involved the nigrofugal pathways. CONCLUSION Improvements in rigidity and tremor mainly involved the pallidofugal pathways dorsal to the STN. Improvement in bradykinesia mainly involved the central part of the STN and the nigrofugal pathways ventrolateral to the STN. Maximal reduction in dopaminergic medication following STN-DBS was associated with an exclusive involvement of the nigrofugal pathways.

2020 ◽  
pp. 89-92
Author(s):  
Elena Call ◽  
Helen Bronte-Stewart

Camptocormia, involuntary flexion of the spine, is aggravated by action and improves when supine, if there is no skeletal deformity. Camptocormia in Parkinson disease (PD) is frequently refractory to dopaminergic medication. Deep brain stimulation (DBS) has been used to treat camptocormia with variable results. We present a PD patient with no camptocormia in the supine position but with progressive thoracic trunk flexion to about 90 degrees as he stood up. He had profound gait impairment and freezing of gait (FOG) off medication, but gait and FOG improved on medication. Camptocormia improved to about 30 degrees, but he had severe dyskinesias. Because he had no skeletal deformity, improved on medication, and had dyskinesias, he had bilateral 130 Hz subthalamic (STN) DBS. His Unified Parkinson’s Disease Rating Scale (UPDRS) Part III improved from 37 to 13 (off medication/on DBS), and after 14 months his camptocormia had resolved. Camptocormia that is responsive to dopaminergic medication, without a skeletal deformity, may respond to bilateral high-frequency STN DBS.


Neurosurgery ◽  
2015 ◽  
Vol 76 (6) ◽  
pp. 756-765 ◽  
Author(s):  
Srivatsan Pallavaram ◽  
Pierre-François D'Haese ◽  
Wendell Lake ◽  
Peter E. Konrad ◽  
Benoit M. Dawant ◽  
...  

Abstract BACKGROUND: Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. OBJECTIVE: To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. METHODS: In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. RESULTS: Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. CONCLUSION: Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.


2016 ◽  
Vol 126 (6) ◽  
pp. 2017-2027 ◽  
Author(s):  
Albert J. Fenoy ◽  
Monica A. McHenry ◽  
Mya C. Schiess

OBJECTIVEPatients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) often develop a deterioration in speech performance, but there is no clear consensus on the specific effects seen or the mechanism involved and little description of the impact of DBS on conversational speech. Furthermore, there has been no fiber tract connectivity analysis to identify the structures potentially modulated by DBS to cause such deficits. The main objective of this study was to quantify spontaneous speech performance and identify potential involvement of the dentatorubrothalamic tract (DRTt) in patients who underwent STN DBS, because this tract has been implicated in speech deterioration.METHODSSpontaneous speech samples were obtained with STN DBS in both on and off modes in 35 patients with PD and assessed across multiple domains. Diffusion tensor imaging tractography seeded from the therapeutic DBS contacts was performed to identify the fiber tracts involved and, specifically, the DRTt. The position of active electrode contacts was assessed relative to that of the STN.RESULTSFifteen patients with akinetic-rigid (AR) PD and 20 with tremor-dominant (TD) PD subtypes were identified. In the AR-PD subgroup of patients, in whom there was DRTt involvement, 71% demonstrated much better overall speech and largely improved or unchanged fluency in the DBS-off condition. In patients with TD PD with DRTt involvement, 50% demonstrated better overall speech in the off condition, and equivocal results regarding improved or worsened fluency were found. When there was minimal DRTt involvement, 75% of patients with AR PD had better overall speech in the DBS-on condition and better or minimal fluency changes. Similarly, 83% of patients with TD PD with minimal DRTt involvement had better or minimal overall speech and fluency changes in the on condition. More medially placed left electrode contacts were associated with more DRTt involvement in 77% of patients (10 of 13).CONCLUSIONSTo the authors' knowledge, this is the first study to have investigated a specific fiber tract involved in STN DBS in different subtypes of PD relative to its impact on spontaneous speech. At optimal therapeutic programming of STN DBS, overall spontaneous speech and fluency were affected more negatively in patients with AR PD than in those with TD PD when there was DRTt involvement. After fiber tract analysis and modeling, it was found that medially positioned left electrode contacts more often involved fibers of the DRTt. If possible, avoidance of the DRTt by using active electrode contacts that are positioned less medially, specifically in patients with AR PD, might result in less speech deterioration.


Neurosurgery ◽  
2019 ◽  
Vol 85 (2) ◽  
pp. E314-E321 ◽  
Author(s):  
Robert C Nickl ◽  
Martin M Reich ◽  
Nicoló Gabriele Pozzi ◽  
Patrick Fricke ◽  
Florian Lange ◽  
...  

Abstract BACKGROUND Clinical trials have established subthalamic deep-brain-stimulation (STN-DBS) as a highly effective treatment for motor symptoms of Parkinson disease (PD), but in clinical practice outcomes are variable. Experienced centers are confronted with an increasing number of patients with partially “failed” STN-DBS, in whom motor benefit doesn’t meet expectations. These patients require a complex multidisciplinary and standardized workup to identify the likely cause. OBJECTIVE To describe outcomes in a series of PD patients undergoing lead revision for suboptimal motor benefit after STN-DBS surgery and characterize selection criteria for surgical revision. METHODS We investigated 9 PD patients with STN-DBS, who had unsatisfactory outcomes despite intensive neurological management. Surgical revision was considered if the ratio of DBS vs levodopa-induced improvement of UPDRS-III (DBS-rr) was below 75% and the electrodes were found outside the dorsolateral STN. RESULTS Fifteen electrodes were replaced via stereotactic revision surgery into the dorsolateral STN without any adverse effects. Median displacement distance was 4.1 mm (range 1.6-8.42 mm). Motor symptoms significantly improved (38.2 ± 6.6 to 15.5 ± 7.9 points, P < .001); DBS-rr increased from 64% to 190%. CONCLUSION Patients with persistent OFFmotor symptoms after STN-DBS should be screened for levodopa-responsiveness, which can serve as a benchmark for best achievable motor benefit. Even small horizontal deviations of the lead from the optimal position within the dorsolateral STN can cause stimulation responses, which are markedly inferior to the levodopa response. Patients with an image confirmed lead displacement and preserved levodopa response are candidates for lead revision and can expect significant motor improvement from appropriate lead replacement.


2019 ◽  
Vol 23 (02) ◽  
pp. 203-208 ◽  
Author(s):  
Aline Juliane Romann ◽  
Bárbara Costa Beber ◽  
Carla Aparecida Cielo ◽  
Carlos Roberto de Mello Rieder

Introduction Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function in individuals with Parkinson disease (PD). The evidence about the effects of STN-DBS on the voice is still inconclusive. Objective To verify the effect of STN-DBS on the voice of Brazilian individuals with PD. Methods Sixteen participants were evaluated on the Unified Parkinson Disease Rating Scale—Part III, and by the measurement of the acoustic modifications in on and off conditions of stimulation. Results The motor symptoms showed significant improvement with STN-DBS on. Regarding the acoustic measures of the voice, only the maximum fundamental frequency (fhi) showed a statistical difference between on- and off-conditions, with reduction in off-condition. Conclusion Changes in computerized acoustic measures are more valuable when interpreted in conjunction with changes in other measures. The single finding in fhi suggests that DBS-STN increases vocal instability. The interpretation of this result should be done carefully, since it may not be of great value if other measures that also indicate instability are not significantly different.


Neurology ◽  
2019 ◽  
Vol 92 (10) ◽  
pp. e1109-e1120 ◽  
Author(s):  
W.M. Michael Schuepbach ◽  
Lisa Tonder ◽  
Alfons Schnitzler ◽  
Paul Krack ◽  
Joern Rau ◽  
...  

ObjectiveTo investigate predictors for improvement of disease-specific quality of life (QOL) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson disease (PD) with early motor complications.MethodsWe performed a secondary analysis of data from the previously published EARLYSTIM study, a prospective randomized trial comparing STN-DBS (n = 124) to best medical treatment (n = 127) after 2 years follow-up with disease-specific QOL (39-item Parkinson's Disease Questionnaire summary index [PDQ-39-SI]) as the primary endpoint. Linear regression analyses of the baseline characteristics age, disease duration, duration of motor complications, and disease severity measured at baseline with the Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS-III “off” and “on” medications, UPDRS-IV) were conducted to determine predictors of change in PDQ-39-SI.ResultsPDQ-39-SI at baseline was correlated to the change in PDQ-39-SI after 24 months in both treatment groups (p < 0.05). The higher the baseline score (worse QOL) the larger the improvement in QOL after 24 months. No correlation was found for any of the other baseline characteristics analyzed in either treatment group.ConclusionImpaired QOL as subjectively evaluated by the patient is the most important predictor of benefit in patients with PD and early motor complications, fulfilling objective gold standard inclusion criteria for STN-DBS. Our results prompt systematically including evaluation of disease-specific QOL when selecting patients with PD for STN-DBS.Clinicaltrials.gov identifierNCT00354133.


2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients &gt;75 yr old, 52 patients &lt;75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


2018 ◽  
Vol 130 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Tsinsue Chen ◽  
Zaman Mirzadeh ◽  
Kristina M. Chapple ◽  
Margaret Lambert ◽  
Holly A. Shill ◽  
...  

OBJECTIVERecent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution.METHODSPD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events.RESULTSSix-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively).CONCLUSIONSIn PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.


2008 ◽  
Vol 273 (1-2) ◽  
pp. 19-24 ◽  
Author(s):  
Jae-Hyeok Heo ◽  
Kyoung-Min Lee ◽  
Sun Ha Paek ◽  
Min-Jeong Kim ◽  
Jee-Young Lee ◽  
...  

Neurosurgery ◽  
2011 ◽  
Vol 70 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Han-Joon Kim ◽  
Beom S. Jeon ◽  
Jee-Young Lee ◽  
Sun Ha Paek ◽  
Dong Gyu Kim

Abstract BACKGROUND Pain is a well-recognized feature of Parkinson disease (PD), which is primarily a motor disorder. In a previous study, we showed that subthalamic deep brain stimulation (STN DBS) improves pain as well as motor symptoms 3 months after surgery in PD patients. OBJECTIVE To determine whether there is a long-term beneficial effect of STN DBS on pain in PD. METHODS We studied 21 patients with PD who underwent STN DBS. Motor symptoms were assessed using the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr staging. Pain was evaluated by asking patients about the quality and severity of pain in each body part. Evaluations were performed at baseline and at 3 and 24 months after surgery. RESULTS At baseline, 18 of the 21 patients (86%) experienced pain. After surgery, most of the pain reported at baseline had improved or disappeared at 3 months and improved further at 24 months. The benefit of STN DBS for pain evaluated at 24 months was comparable to that with medication at baseline. At 24 months, 9 patients (43%) reported new pain that was not present at baseline. Most of the new pain was musculoskeletal in quality. Despite the development of new pain, the mean pain score at follow-up was lower than at baseline. CONCLUSION STN DBS improves pain in PD, and this beneficial effect persists, being observed after a prolonged follow-up of 24 months. In addition, in many of the PD patients new, mainly musculoskeletal pain developed on longer follow-up.


Sign in / Sign up

Export Citation Format

Share Document