scholarly journals Protein designer David Baker: I like doing things that seem like magic

2020 ◽  
Vol 7 (8) ◽  
pp. 1410-1412
Author(s):  
Weijie Zhao ◽  
Chu Wang

Abstract Search ‘de novo protein design’ on Google and you will find the name David Baker in all results of the first page. Professor David Baker at the University of Washington and other scientists are opening up a new world of fantastic proteins. Protein is the direct executor of most biological functions and its structure and function are fully determined by its primary sequence. Baker's group developed the Rosetta software suite that enabled the computational prediction and design of protein structures. Being able to design proteins from scratch means being able to design executors for diverse purposes and benefit society in multiple ways. Recently, NSR interviewed Prof. Baker on this fast-developing field and his personal experiences.

2015 ◽  
Vol 33 ◽  
pp. 16-26 ◽  
Author(s):  
Derek N Woolfson ◽  
Gail J Bartlett ◽  
Antony J Burton ◽  
Jack W Heal ◽  
Ai Niitsu ◽  
...  

2018 ◽  
Vol 15 (145) ◽  
pp. 20180472 ◽  
Author(s):  
Katie J. Grayson ◽  
J. L. Ross Anderson

A principal goal of synthetic biology is the de novo design or redesign of biomolecular components. In addition to revealing fundamentally important information regarding natural biomolecular engineering and biochemistry, functional building blocks will ultimately be provided for applications including the manufacture of valuable products and therapeutics. To fully realize this ambitious goal, the designed components must be biocompatible, working in concert with natural biochemical processes and pathways, while not adversely affecting cellular function. For example, de novo protein design has provided us with a wide repertoire of structures and functions, including those that can be assembled and function in vivo . Here we discuss such biocompatible designs, as well as others that have the potential to become biocompatible, including non-protein molecules, and routes to achieving full biological integration.


Author(s):  
Emily A. Berckman ◽  
Emily J. Hartzell ◽  
Alexander A. Mitkas ◽  
Qing Sun ◽  
Wilfred Chen

Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.


Author(s):  
Ivan V. Korendovych ◽  
William F. DeGrado

Abstract Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.


2021 ◽  
Vol 18 (3) ◽  
pp. 233-233
Author(s):  
Arunima Singh

2004 ◽  
Vol 43 (14) ◽  
pp. 3817-3826 ◽  
Author(s):  
J. L. Klepeis ◽  
C. A. Floudas ◽  
D. Morikis ◽  
C. G. Tsokos ◽  
J. D. Lambris

1997 ◽  
Vol 273 (4) ◽  
pp. 789-796 ◽  
Author(s):  
Bassil I Dahiyat ◽  
Catherine A Sarisky ◽  
Stephen L Mayo

Sign in / Sign up

Export Citation Format

Share Document