Annual Review of Chemical and Biomolecular Engineering
Latest Publications


TOTAL DOCUMENTS

268
(FIVE YEARS 69)

H-INDEX

59
(FIVE YEARS 9)

Published By Annual Reviews

1947-5446, 1947-5438

Author(s):  
Ivan Ivanov ◽  
Sebastián López Castellanos ◽  
Severo Balasbas ◽  
Lado Otrin ◽  
Nika Marušič ◽  
...  

The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life—the cell—and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.


Author(s):  
Michael Schlüter ◽  
Sonja Herres-Pawlis ◽  
Ulrich Nieken ◽  
Ute Tuttlies ◽  
Dieter Bothe

Improving the yield and selectivity of chemical reactions is one of the challenging tasks in paving the way for a more sustainable and climate-friendly economy. For the industrially highly relevant gas–liquid reactions, this can be achieved by tailoring the timescales of mixing to the requirements of the reaction. Although this has long been known for idealized reactors and time- and space-averaged processes, considerable progress has been made recently on the influence of local mixing processes. This progress has become possible through joint research between chemists, mathematicians, and engineers. We present the reaction systems with adjustable kinetics that have been developed, which are easy to handle and analyze. We show examples of how the selectivity of competitive-consecutive reactions can be controlled via local bubble wake structures. This is demonstrated for Taylor bubbles and bubbly flows under technical conditions. Highly resolvednumerical simulations confirm the importance of the bubble wake structure for the performance of a particular chemical reaction and indicate tremendous potential for future process improvements.


Author(s):  
R. Bharath Venkatesh ◽  
Neha Manohar ◽  
Yiwei Qiang ◽  
Haonan Wang ◽  
Hong Huy Tran ◽  
...  

Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores. In SIP, exposure of a polymer–nanoparticle bilayer to solvent vapor atmosphere induces capillary condensation of solvent in the pores of nanoparticle packing, leading to infiltration of polymer into the solvent-filled pores. CaRI/SIP PINFs show superior properties compared with polymer nanocomposite films made using traditional methods, including superb mechanical properties, thermal stability, heat transfer, and optical properties. This review discusses fundamental aspects of the infiltration process and highlights potential applications in separations, structural coatings, and polymer upcycling—a process to convert polymer wastes into useful chemicals.


Author(s):  
Sung-Hyuk Sunwoo ◽  
Kyoung-Ho Ha ◽  
Sangkyu Lee ◽  
Nanshu Lu ◽  
Dae-Hyeong Kim

High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.


Author(s):  
Rachel A. Segalman ◽  
Michael F. Doherty

Author(s):  
Nikolay V. Ryzhkov ◽  
Konstantin G. Nikolaev ◽  
Artemii S. Ivanov ◽  
Ekaterina V. Skorb

Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Walter Thavarajah ◽  
Laura M. Hertz ◽  
David Z. Bushhouse ◽  
Chloé M. Archuleta ◽  
Julius B. Lucks

RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems solving pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Philip S. Ringrose ◽  
Anne-Kari Furre ◽  
Stuart M.V. Gilfillan ◽  
Samuel Krevor ◽  
Martin Landrø ◽  
...  

CO2 storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are ( a) the significant physicochemical processes, ( b) the factors limiting CO2 storage capacity, and ( c) the requirements for global scale-up. Although CO2 capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO2 injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO2 storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Nick Fackler ◽  
Björn D. Heijstra ◽  
Blake J. Rasor ◽  
Hunter Brown ◽  
Jacob Martin ◽  
...  

Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation using carbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Angelie Rivera-Rodriguez ◽  
Carlos M. Rinaldi-Ramos

Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document