scholarly journals Bayesian Inference: An Introduction to Hypothesis Testing Using Bayes Factors

2019 ◽  
Vol 22 (7) ◽  
pp. 1244-1246 ◽  
Author(s):  
Sabeeh A Baig
2020 ◽  
Author(s):  
Zoltan Dienes

Obtaining evidence that something does not exist requires knowing how big it would be were it to exist. Testing a theory that predicts an effect thus entails specifying the range of effect sizes consistent with the theory, in order to know when the evidence counts against the theory. Indeed, a theoretically relevant effect size must be specified for power calculations, equivalence testing, and Bayes factors in order that the inferential statistics test the theory. Specifying relevant effect sizes for power, or the equivalence region for equivalence testing, or the scale factor for Bayes factors, is necessary for many journal formats, such as registered reports, and should be necessary for all articles that use hypothesis testing. Yet there is little systematic advice on how to approach this problem. This article offers some principles and practical advice for specifying theoretically relevant effect sizes for hypothesis testing.


2018 ◽  
Vol 1 (2) ◽  
pp. 281-295 ◽  
Author(s):  
Alexander Etz ◽  
Julia M. Haaf ◽  
Jeffrey N. Rouder ◽  
Joachim Vandekerckhove

Hypothesis testing is a special form of model selection. Once a pair of competing models is fully defined, their definition immediately leads to a measure of how strongly each model supports the data. The ratio of their support is often called the likelihood ratio or the Bayes factor. Critical in the model-selection endeavor is the specification of the models. In the case of hypothesis testing, it is of the greatest importance that the researcher specify exactly what is meant by a “null” hypothesis as well as the alternative to which it is contrasted, and that these are suitable instantiations of theoretical positions. Here, we provide an overview of different instantiations of null and alternative hypotheses that can be useful in practice, but in all cases the inferential procedure is based on the same underlying method of likelihood comparison. An associated app can be found at https://osf.io/mvp53/ . This article is the work of the authors and is reformatted from the original, which was published under a CC-By Attribution 4.0 International license and is available at https://psyarxiv.com/wmf3r/ .


2017 ◽  
Author(s):  
Guillermo CAMPITELLI

This tutorial on Bayesian inference targets psychological researchers who are trained in the null hypothesis testing approach and use of SPSS software. There a number ofexcellent quality tutorials on Bayesian inference, but their problem is that, they assume mathematical knowledge that most psychological researchers do not possess. Thistutorial starts from the idea that Bayesian inference is not more difficult than the traditional approach, but before being introduced to probability theory notation is necessary for the newcomer to understand simple probability principles, which could be explained without mathematical formulas or probability notation. For this purpose in this tutorial I use a simple tool-the parameter-data table-to explain how probability theory can easily be used to make inferences in research. Then I compare the Bayesian and the null hypothesis testing approach using the same tool. Only after having introduced these principles I show the formulas and notations and explain how they relate to the parameter-data table. It is to be expected that this tutorial will increase the use of Bayesian inference by psychological researchers. Moreover, Bayesian researchers may use this tutorial to teach Bayesian inference to undergraduate or postgraduate students.


2021 ◽  
pp. 1471082X2098131
Author(s):  
Alan Agresti ◽  
Francesco Bartolucci ◽  
Antonietta Mira

We describe two interesting and innovative strands of Murray Aitkin's research publications, dealing with mixture models and with Bayesian inference. Of his considerable publications on mixture models, we focus on a nonparametric random effects approach in generalized linear mixed modelling, which has proven useful in a wide variety of applications. As an early proponent of ways of implementing the Bayesian paradigm, Aitkin proposed an alternative Bayes factor based on a posterior mean likelihood. We discuss these innovative approaches and some research lines motivated by them and also suggest future related methodological implementations.


Sign in / Sign up

Export Citation Format

Share Document