Frameless Robot-Assisted Deep Brain Stimulation Surgery: An Initial Experience

2019 ◽  
Vol 17 (4) ◽  
pp. 424-431 ◽  
Author(s):  
Allen L Ho ◽  
Arjun V Pendharkar ◽  
Ryan Brewster ◽  
Derek L Martinez ◽  
Richard A Jaffe ◽  
...  

Abstract BACKGROUND Modern robotic-assist surgical systems have revolutionized stereotaxy for a variety of procedures by increasing operative efficiency while preserving and even improving accuracy and safety. However, experience with robotic systems in deep brain stimulation (DBS) surgery is scarce. OBJECTIVE To present an initial series of DBS surgery performed utilizing a frameless robotic solution for image-guided stereotaxy, and report on operative efficiency, stereotactic accuracy, and complications. METHODS This study included the initial 20 consecutive patients undergoing bilateral robot-assisted DBS. The prior 20 nonrobotic, frameless cohort of DBS cases was sampled as a baseline historic control. For both cohorts, patient demographic and clinical data were collected including postoperative complications. Intraoperative duration and number of Microelectrode recording (MER) and final lead passes were recorded. For the robot-assisted cohort, 2D radial errors were calculated. RESULTS Mean case times (total operating room, anesthesia, and operative times) were all significantly decreased in the robot-assisted cohort (all P-values < .02) compared to frameless DBS. When looking at trends in case times, operative efficiency improved over time in the robot-assisted cohort across all time assessment points. Mean radial error in the robot-assisted cohort was 1.40 ± 0.11 mm, and mean depth error was 1.05 ± 0.18 mm. There was a significant decrease in the average number of MER passes in the robot-assisted cohort (1.05) compared to the nonrobotic cohort (1.45, P < .001). CONCLUSION This is the first report of application of frameless robotic-assistance with the Mazor Renaissance platform (Mazor Robotics Ltd, Caesarea, Israel) for DBS surgery, and our findings reveal that an initial experience is safe and can have a positive impact on operative efficiency, accuracy, and safety.

2018 ◽  
Vol 120 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Majed Jouma Katati ◽  
Vidal A. Jover ◽  
Velasco B. Iañez ◽  
Pérez M. J. Navarro ◽  
Sabido J. de la Cruz ◽  
...  

2018 ◽  
Vol 58 (5) ◽  
pp. 199-205 ◽  
Author(s):  
Tatsuya SASAKI ◽  
Takashi AGARI ◽  
Ken KUWAHARA ◽  
Ittetsu KIN ◽  
Mihoko OKAZAKI ◽  
...  

Author(s):  
Luciano Furlanetti ◽  
Jonathan Ellenbogen ◽  
Hortensia Gimeno ◽  
Laura Ainaga ◽  
Vijay Narbad ◽  
...  

OBJECTIVE Deep brain stimulation (DBS) is an established treatment for pediatric dystonia. The accuracy of electrode implantation is multifactorial and remains a challenge in this age group, mainly due to smaller anatomical targets in very young patients compared to adults, and also due to anatomical abnormalities frequently associated with some etiologies of dystonia. Data on the accuracy of robot-assisted DBS surgery in children are limited. The aim of the current paper was to assess the accuracy of robot-assisted implantation of DBS leads in a series of patients with childhood-onset dystonia. METHODS Forty-five children with dystonia undergoing implantation of DBS leads under general anesthesia between 2017 and 2019 were included. Robot-assisted stereotactic implantation of the DBS leads was performed. The final position of the electrodes was verified with an intraoperative 3D scanner (O-arm). Coordinates of the planned electrode target and actual electrode position were obtained and compared, looking at the radial error, depth error, absolute error, and directional error, as well as the euclidean distance. Functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team were analyzed with regard to motor skills, individualized goal achievement, and patients’ and caregivers’ expectations. RESULTS A total of 90 DBS electrodes were implanted and 48.5% of the patients were female. The mean age was 11.0 ± 0.6 years (range 3–18 years). All patients received bilateral DBS electrodes into the globus pallidus internus. The median absolute errors in x-, y-, and z-axes were 0.85 mm (range 0.00–3.25 mm), 0.75 mm (range 0.05–2.45 mm), and 0.75 mm (range 0.00–3.50 mm), respectively. The median euclidean distance from the target to the actual electrode position was 1.69 ± 0.92 mm, and the median radial error was 1.21 ± 0.79. The robot-assisted technique was easily integrated into the authors’ surgical practice, improving accuracy and efficiency, and reducing surgical time significantly along the learning curve. No major perioperative complications occurred. CONCLUSIONS Robot-assisted stereotactic implantation of DBS electrodes in the pediatric age group is a safe and accurate surgical method. Greater accuracy was present in this cohort in comparison to previous studies in which conventional stereotactic frame-based techniques were used. Robotic DBS surgery and neuroradiological advances may result in further improvement in surgical targeting and, consequently, in better clinical outcome in the pediatric population.


Sign in / Sign up

Export Citation Format

Share Document