Elusive Qualities in Poetry, Receptivity, and Neural Correlates

Author(s):  
Reuven Tsur

Arnheim’s terms “actively organizing mind” and “passively receiving mind” can usefully be applied in practical criticism to suggest the significance of poetic structures as described by more concrete terms. But it is not quite clear what exactly they refer to. This chapter explores how the latter term can be illuminating in close readings of poems by Verlaine. Neuropsychological findings proposed in the last section fill those terms with more solid meaning. When you experience sensory stimuli, certain areas in the secondary somatosensory cortex light up. When you perceive yourself as the voluntary agent causing the sensations, this activity is suppressed. This may account for the observation that the actively organizing mind is less sensitive to elusive sensations in poetry than a passive attitude. This chapter explores the linguistic means—syntactic, semantic, and phonetic—by which Verlaine’s texts manipulate the fictional speaker and/or the flesh-and-blood reader into a passive stance.

2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
James K. Rilling ◽  
Amber Gonzalez ◽  
Minwoo Lee

In many societies, grandmothers are important caregivers, and grandmaternal investment is often associated with improved grandchild well-being. Here, we present, to our knowledge, the first study to examine grandmaternal brain function. We recruited 50 grandmothers with at least one biological grandchild between 3 and 12 years old. Brain function was measured with functional magnetic resonance imaging as grandmothers viewed pictures of their grandchild, an unknown child, the same-sex parent of the grandchild, and an unknown adult. Grandmothers also completed questionnaires to measure their degree of involvement with and attachment to their grandchild. After controlling for age and familiarity of stimuli, viewing grandchild pictures activated areas involved with emotional empathy (insula and secondary somatosensory cortex) and movement (motor cortex and supplementary motor area). Grandmothers who more strongly activated areas involved with cognitive empathy (temporo-parietal junction and dorsomedial prefrontal cortex) when viewing pictures of the grandchild desired greater involvement in caring for the grandchild. Finally, compared with results from an earlier study of fathers, grandmothers more strongly activated regions involved with emotional empathy (dorsal anterior cingulate cortex, insula and secondary somatosensory cortex), and motivation (nucleus accumbens, ventral pallidum and caudate nucleus). All in all, our findings suggest that emotional empathy may be a key component of grandmaternal responses to their grandchildren.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Pia Schröder ◽  
Timo Torsten Schmidt ◽  
Felix Blankenburg

Research on somatosensory awareness has yielded highly diverse findings with putative neural correlates ranging from activity within somatosensory cortex to activation of widely distributed frontoparietal networks. Divergent results from previous studies may reside in cognitive processes that often coincide with stimulus awareness in experimental settings. To scrutinise the specific relevance of regions implied in the target detection network, we used functional magnetic resonance imaging (n = 27) on a novel somatosensory detection task that explicitly controls for stimulus uncertainty, behavioural relevance, overt reports, and motor responses. Using Bayesian Model Selection, we show that responses reflecting target detection are restricted to secondary somatosensory cortex, whereas activity in insular, cingulate, and motor regions is best explained in terms of stimulus uncertainty and overt reports. Our results emphasise the role of sensory-specific cortex for the emergence of perceptual awareness and dissect the contribution of the frontoparietal network to classical detection tasks.


Neuron ◽  
2020 ◽  
Vol 106 (3) ◽  
pp. 515-525.e5 ◽  
Author(s):  
Cameron Condylis ◽  
Eric Lowet ◽  
Jianguang Ni ◽  
Karina Bistrong ◽  
Timothy Ouellette ◽  
...  

2020 ◽  
Vol 117 (50) ◽  
pp. 32136-32144
Author(s):  
Saikat Ray ◽  
Miao Li ◽  
Stefan Paul Koch ◽  
Susanne Mueller ◽  
Philipp Boehm-Sturm ◽  
...  

Seasonal cycles govern life on earth, from setting the time for the mating season to influencing migrations and governing physiological conditions like hibernation. The effect of such changing conditions on behavior is well-appreciated, but their impact on the brain remains virtually unknown. We investigate long-term seasonal changes in the mammalian brain, known as Dehnel’s effect, where animals exhibit plasticity in body and brain sizes to counter metabolic demands in winter. We find large seasonal variation in cellular architecture and neuronal activity in the smallest terrestrial mammal, the Etruscan shrew, Suncus etruscus. Their brain, and specifically their neocortex, shrinks in winter. Shrews are tactile hunters, and information from whiskers first reaches the somatosensory cortex layer 4, which exhibits a reduced width (−28%) in winter. Layer 4 width (+29%) and neuron number (+42%) increase the following summer. Activity patterns in the somatosensory cortex show a prominent reduction of touch-suppressed neurons in layer 4 (−55%), the most metabolically active layer. Loss of inhibitory gating occurs with a reduction in parvalbumin-positive interneurons, one of the most active neuronal subtypes and the main regulators of inhibition in layer 4. Thus, a reduction in neurons in layer 4 and particularly parvalbumin-positive interneurons may incur direct metabolic benefits. However, changes in cortical balance can also affect the threshold for detecting sensory stimuli and impact prey choice, as observed in wild shrews. Thus, seasonal neural adaptation can offer synergistic metabolic and behavioral benefits to the organism and offer insights on how neural systems show adaptive plasticity in response to ecological demands.


Sign in / Sign up

Export Citation Format

Share Document