The Strong Law of Large Numbers

2021 ◽  
pp. 438-470
Author(s):  
James Davidson

This chapter focuses largely on methods of proof of the strong law, building on the fundamental convergence lemma. It covers Kolmogorov's three‐series theorem, strong laws for martingales, and random weighting. Then a range of strong laws are proved for mixingales and for near‐epoch dependent and mixing processes.

1994 ◽  
Vol 44 (3-4) ◽  
pp. 141-150 ◽  
Author(s):  
André Adler

In this article it is shown, through a very interesting class of random variables, how one may go about explicitly obtaining constants in order to obtain a stable strong law of large numbers. The question at hand is, not when we can find constants an and bn so that our sequence of i. i.d. random variables obeys this type of strong law of large numbers, but how one goes about constructing these constants so that [Formula: see text] almost surely, even though { X, Xn} are i.i.d. with either [Formula: see text] There are three possible cases. We exhibit all three via a particular family of random variables.


1988 ◽  
Vol 37 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Bong Dae Choi ◽  
Soo Hak Sung

Let { Xn, n ≥ 1 } be a sequence of independent Banach valued random variables and { an, n, ≥ 1 } a sequence of real numbers such that 0 < an ↑ ∞. It is shown that, under the assumption with some restrictions on φ, Sn/an → 0 a.s. if and only if Sn/an → 0 in probability if and only if Sn/an → 0 in L1. From this result several known strong laws of large numbers in Banach spaces are easily derived.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Anna Kuczmaszewska

In this paper the classical strong laws of large number of Kolmogorov, Chung, and Teicher for independent random variables were generalized on the case of -mixing sequence. The main result was applied to obtain a Marcinkiewicz SLLN.


1991 ◽  
Vol 7 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Bruce E. Hansen

This paper presents maximal inequalities and strong law of large numbers for weakly dependent heterogeneous random variables. Specifically considered are Lr mixingales for r > 1, strong mixing sequences, and near epoch dependent (NED) sequences. We provide the first strong law for Lr-bounded Lr mixingales and NED sequences for 1 > r > 2. The strong laws presented for α-mixing sequences are less restrictive than the laws of McLeish [8].


1995 ◽  
Vol 11 (2) ◽  
pp. 347-358 ◽  
Author(s):  
R.M. de Jong

This paper provides weak and strong laws of large numbers for weakly dependent heterogeneous random variables. The weak laws of large numbers presented extend known results to the case of trended random variables. The main feature of our strong law of large numbers for mixingale sequences is the less strict decay rate that is imposed on the mixingale numbers as compared to previous results.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Zbigniew A. Lagodowski

We extend to random fields case, the results of Woyczynski, who proved Brunk's type strong law of large numbers (SLLNs) for𝔹-valued random vectors under geometric assumptions. Also, we give probabilistic requirements for above-mentioned SLLN, related to results obtained by Acosta as well as necessary and sufficient probabilistic conditions for the geometry of Banach space associated to the strong and weak law of large numbers for multidimensionally indexed random vectors.


1987 ◽  
Vol 107 (1-2) ◽  
pp. 133-151 ◽  
Author(s):  
Terry R. McConnell

SynopsisWe provide necessary and sufficient conditions for two-parameter convergence in the strong law of large numbers for U-statistics. We also obtain weak-type (1,1) inequalities for one and two-sample U-statistics of order 2 which are, in a sense, best possible.


2021 ◽  
Vol 73 (3) ◽  
pp. 431-436
Author(s):  
K. Zajkowski

UDC 517.9 For let if and if . For a random variable ξ let denote ; is a norm in a space - subgaussian random variables. We prove that if for a sequence there exist positive constants and such that for every natural number the following inequality holds then converges almost surely to zero as . This result is a generalization of the strong law of large numbers for independent sub-Gaussian random variables [see R. L. Taylor, T.-C. Hu, <em>Sub-Gaussian techniques in proving strong laws of large numbers</em>, Amer. Math. Monthly, <strong>94</strong>, 295 – 299 (1987)] to the case of dependent -sub-Gaussian random variables.


2019 ◽  
Vol 39 (1) ◽  
pp. 19-38
Author(s):  
Shuhua Chang ◽  
Deli Li ◽  
Andrew Rosalsky

Let 0 < p ≤ 2, let {Xn; n ≥ 1} be a sequence of independent copies of a real-valued random variable X, and set Sn = X1 + . . . + Xn, n ≥ ­ 1. Motivated by a theorem of Mikosch 1984, this note is devoted to establishing a strong law of large numbers for the sequence {max1≤k≤n |Sk| ; n ≥ ­ 1}. More specifically, necessary and sufficient conditions are given forlimn→∞ max1≤k≤n |Sk|log n−1 = e1/p a.s.,where log x = loge max{e, x}, x ≥­ 0.


Sign in / Sign up

Export Citation Format

Share Document