The affine connection

2021 ◽  
pp. 121-132
Author(s):  
Andrew M. Steane

The connection and the covariant derivative are treated. Connection coefficients are introduced in their role of expressing the change in the coordinate basis vectors between neighbouring points. The covariant derivative of a vector is then defined. Next we relate the connection to the metric, and obtain the Levi-Civita connection. The logic concerning what is defined and what is derived is explained carefuly. The notion of a derivative along a curve is defined. The emphasis through is on clarity and avoiding confusions arising from the plethora of concepts and symbols.

2012 ◽  
Vol 07 ◽  
pp. 158-164 ◽  
Author(s):  
JAMES M. NESTER ◽  
CHIH-HUNG WANG

Many alternative gravity theories use an independent connection which leads to torsion in addition to curvature. Some have argued that there is no physical need to use such connections, that one can always use the Levi-Civita connection and just treat torsion as another tensor field. We explore this issue here in the context of the Poincaré Gauge theory of gravity, which is usually formulated in terms of an affine connection for a Riemann-Cartan geometry (torsion and curvature). We compare the equations obtained by taking as the independent dynamical variables: (i) the orthonormal coframe and the connection and (ii) the orthonormal coframe and the torsion (contortion), and we also consider the coupling to a source. From this analysis we conclude that, at least for this class of theories, torsion should not be considered as just another tensor field.


2012 ◽  
Vol 09 (01) ◽  
pp. 1250014 ◽  
Author(s):  
ERICO TANAKA ◽  
DEMETER KRUPKA

The metrizability problem for a symmetric affine connection on a manifold, invariant with respect to a group of diffeomorphisms G, is considered. We say that the connection is G-metrizable, if it is expressible as the Levi-Civita connection of a G-invariant metric field. In this paper we analyze the G-metrizability equations for the rotation group G = SO (3), acting canonically on three- and four-dimensional Euclidean spaces. We show that the property of the connection to be SO(3)-invariant allows us to find complete explicit description of all solutions of the SO(3)-metrizability equations.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter is about Riemannian manifolds. It first discusses the metric manifold and the Levi-Civita connection, determining if the metric is Riemannian or Lorentzian. Next, the chapter turns to the properties of the curvature tensor. It states without proof the intrinsic versions of the properties of the Riemann–Christoffel tensor of a covariant derivative already given in Chapter 2. This chapter then performs the same derivation as in Chapter 4 by obtaining the Einstein equations of general relativity by varying the Hilbert action. However, this will be done in the intrinsic manner, using the tools developed in the present and the preceding chapters.


2016 ◽  
Vol 13 (08) ◽  
pp. 1650110
Author(s):  
Zbyněk Urban ◽  
Jana Volná

The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold [Formula: see text] of the Euclidean space [Formula: see text] coincides with the Levi-Civita connection of some [Formula: see text], respectively [Formula: see text]-invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.


2020 ◽  
Vol 31 (08) ◽  
pp. 2050065
Author(s):  
Jyotishman Bhowmick ◽  
Debashish Goswami ◽  
Giovanni Landi

We study covariant derivatives on a class of centered bimodules [Formula: see text] over an algebra [Formula: see text] We begin by identifying a [Formula: see text]-submodule [Formula: see text] which can be viewed as the analogue of vector fields in this context; [Formula: see text] is proven to be a Lie algebra. Connections on [Formula: see text] are in one-to-one correspondence with covariant derivatives on [Formula: see text]. We recover the classical formulas of torsion and metric compatibility of a connection in the covariant derivative form. As a result, a Koszul formula for the Levi-Civita connection is also derived.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450041 ◽  
Author(s):  
O. C. Stoica

On a Riemannian or a semi-Riemannian manifold, the metric determines invariants like the Levi-Civita connection and the Riemann curvature. If the metric becomes degenerate (as in singular semi-Riemannian geometry), these constructions no longer work, because they are based on the inverse of the metric, and on related operations like the contraction between covariant indices. In this paper, we develop the geometry of singular semi-Riemannian manifolds. First, we introduce an invariant and canonical contraction between covariant indices, applicable even for degenerate metrics. This contraction applies to a special type of tensor fields, which are radical-annihilator in the contracted indices. Then, we use this contraction and the Koszul form to define the covariant derivative for radical-annihilator indices of covariant tensor fields, on a class of singular semi-Riemannian manifolds named radical-stationary. We use this covariant derivative to construct the Riemann curvature, and show that on a class of singular semi-Riemannian manifolds, named semi-regular, the Riemann curvature is smooth. We apply these results to construct a version of Einstein's tensor whose density of weight 2 remains smooth even in the presence of semi-regular singularities. We can thus write a densitized version of Einstein's equation, which is smooth, and which is equivalent to the standard Einstein equation if the metric is non-degenerate.


Author(s):  
V. Cortés ◽  
A. Saha ◽  
D. Thung

AbstractWe study the behavior of connections and curvature under the HK/QK correspondence, proving simple formulae expressing the Levi-Civita connection and Riemann curvature tensor on the quaternionic Kähler side in terms of the initial hyper-Kähler data. Our curvature formula refines a well-known decomposition theorem due to Alekseevsky. As an application, we compute the norm of the curvature tensor for a series of complete quaternionic Kähler manifolds arising from flat hyper-Kähler manifolds. We use this to deduce that these manifolds are of cohomogeneity one.


2002 ◽  
Vol 34 (3) ◽  
pp. 329-340 ◽  
Author(s):  
BRAD LACKEY

Using Chern's method of transgression, the Euler class of a compact orientable Riemann–Finsler space is represented by polynomials in the connection and curvature matrices of a torsion-free connection. When using the Chern connection (and hence the Christoffel–Levi–Civita connection in the Riemannian case), this result extends the Gauss–Bonnet formula of Bao and Chern to Finsler spaces whose indicatrices need not have constant volume.


Author(s):  
Joel W. Robbin ◽  
Dietmar A. Salamon

Sign in / Sign up

Export Citation Format

Share Document