invariant metric
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 28)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Pak Tung Ho ◽  
Jinwoo Shin

AbstractAs a generalization of the Yamabe problem, Hebey and Vaugon considered the equivariant Yamabe problem: for a subgroup G of the isometry group, find a G-invariant metric whose scalar curvature is constant in a given conformal class. In this paper, we study the equivariant Yamabe problem with boundary.


Author(s):  
Amir Moghimnejad ◽  
Shahrokh Parvizi

In this paper, we study circuit complexity for a free vector field of a [Formula: see text] gauge theory in Coulomb gauge, and Gaussian states. We introduce a quantum circuit model with Gaussian states, including reference and target states. Using Nielsen’s geometric approach, the complexity then can be found as the shortest geodesic in the space of states. This geodesic is based on the notion of geodesic distance on the Lie group of Bogoliubov transformations equipped with a right-invariant metric. We use the framework of the covariance matrix to compute circuit complexity between Gaussian states. We apply this framework to the free vector field in general dimensions where we compute the circuit complexity of the ground state of the Hamiltonian.


Author(s):  
Daniel Jacob Tward

Accurate spatial alignment is essential for any population neuroimaging study, and affine (12 parameter linear/translation) or rigid (6 parameter rotation/translation) alignments play a major role. Here we consider intensity based alignment of neuroimages using gradient based optimization, which is a problem that continues to be important in many other areas of medical imaging and computer vision in general. A key challenge is robustness. Optimization often fails when transformations have components with different characteristic scales, such as linear versus translation parameters. Hand tuning or other scaling approaches have been used, but efficient automatic methods are essential for generalizing to new imaging modalities, to specimens of different sizes, and to big datasets where manual approaches are not feasible. To address this we develop a left invariant metric on these two matrix groups, based on the norm squared of optical flow induced on a template image. This metric is used in a natural gradient descent algorithm, where gradients (covectors) are converted to perturbations (vectors) by applying the inverse of the metric to define a search direction in which to update parameters. Using a publicly available magnetic resonance neuroimage database, we show that this approach outperforms several other gradient descent optimization strategies. Due to left invariance, our metric needs to only be computed once during optimization, and can therefore be implemented with negligible computation time.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jianyun Guan ◽  
Haiming Liu

The group of rigid motions of the Minkowski plane with a general left-invariant metric is denoted by E 1 , 1 , g λ 1 , λ 2 , where λ 1 ≥ λ 2 > 0 . It provides a natural 2 -parametric deformation family of the Riemannian homogeneous manifold Sol 3 = E 1 , 1 , g 1 , 1 which is the model space to solve geometry in the eight model geometries of Thurston. In this paper, we compute the sub-Riemannian limits of the Gaussian curvature for a Euclidean C 2 -smooth surface in E 1 , 1 , g L λ 1 , λ 2 away from characteristic points and signed geodesic curvature for the Euclidean C 2 -smooth curves on surfaces. Based on these results, we get a Gauss-Bonnet theorem in the group of rigid motions of the Minkowski plane with a general left-invariant metric.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Viviana del Barco ◽  
Andrei Moroianu

Abstract We study left-invariant conformal Killing 2- or 3-forms on simply connected 2-step nilpotent Riemannian Lie groups. We show that if the center of the group is of dimension greater than or equal to 4, then every such form is automatically coclosed (i.e. it is a Killing form). In addition, we prove that the only Riemannian 2-step nilpotent Lie groups with center of dimension at most 3 and admitting left-invariant non-coclosed conformal Killing 2- and 3-forms are the following: The Heisenberg Lie groups and their trivial 1-dimensional extensions, endowed with any left-invariant metric, and the simply connected Lie group corresponding to the free 2-step nilpotent Lie algebra on 3 generators, with a particular 1-parameter family of metrics. The explicit description of the space of conformal Killing 2- and 3-forms is provided in each case.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 162
Author(s):  
Riccardo Martini ◽  
Alessandro Ugolotti ◽  
Omar Zanusso

On the basis of a limited number of reasonable axioms, we discuss the classification of all the possible universality classes of diffeomorphisms invariant metric theories of quantum gravity. We use the language of the renormalization group and adopt several ideas which originate in the context of statistical mechanics and quantum field theory. Our discussion leads to several ideas that could affect the status of the asymptotic safety conjecture of quantum gravity and give universal arguments towards its proof.


Author(s):  
Riccardo Martini ◽  
Alessandro Ugolotti ◽  
Omar Zanusso

On the basis of a limited number of reasonable axioms, we discuss the classification of all the possible universality classes of diffeomorphisms invariant metric theories of quantum gravity. We use the language of the renormalization group and adopt several ideas which originate in the context of statistical mechanics and quantum field theory. Our discussion leads to several ideas that could affect the status of the asymptotic safety conjecture of quantum gravity and give universal arguments towards its proof.


Sign in / Sign up

Export Citation Format

Share Document