Preliminaries

Author(s):  
Andreas Bolfing

Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.

2018 ◽  
Vol 38 (2) ◽  
pp. 75-82
Author(s):  
Abdelhakim Chillali

In computer science, a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here, "easy" and "hard" are to be understood in the sense of computational complexity theory, specifically the theory of polynomial time problems. Not being one-to-one is not considered sufficient of a function for it to be called one-way (see Theoretical Definition, in article). A twin prime is a prime number that has a prime gap of two, in other words, differs from another prime number by two, for example the twin prime pair (5,3). The question of whether there exist infinitely many twin primes has been one of the great open questions in number theory for many years. This is the content of the twin prime conjecture, which states: There are infinitely many primes p such that p + 2 is also prime. In this work we define a new notion: ‘r-prime number of degree k’ and   we give a new RSA trap-door one-way. This notion generalized a twin prime numbers because the twin prime numbers are 2-prime numbers of degree 1.


Author(s):  
Robin Whitty ◽  
Robin Wilson

Alan Turing’s mathematical interests were deep and wide-ranging. From the beginning of his career in Cambridge he was involved with probability theory, algebra (the theory of groups), mathematical logic, and number theory. Prime numbers and the celebrated Riemann hypothesis continued to preoccupy him until the end of his life. As a mathematician, and as a scientist generally, Turing was enthusiastically omnivorous. His collected mathematical works comprise thirteen papers, not all published during his lifetime, as well as the preface from his Cambridge Fellowship dissertation; these cover group theory, probability theory, number theory (analytic and elementary), and numerical analysis. This broad swathe of work is the focus of this chapter. But Turing did much else that was mathematical in nature, notably in the fields of logic, cryptanalysis, and biology, and that work is described in more detail elsewhere in this book. To be representative of Turing’s mathematical talents is a more realistic aim than to be encyclopaedic. Group theory and number theory were recurring preoccupations for Turing, even during wartime; they are represented in this chapter by his work on the word problem and the Riemann hypothesis, respectively. A third preoccupation was with methods of statistical analysis: Turing’s work in this area was integral to his wartime contribution to signals intelligence. I. J. Good, who worked with Turing at Bletchley Park, has provided an authoritative account of this work, updated in the Collected Works. By contrast, Turing’s proof of the central limit theorem from probability theory, which earned him his Cambridge Fellowship, is less well known: he quickly discovered that the theorem had already been demonstrated, the work was never published, and his interest in it was swiftly superseded by questions in mathematical logic. Nevertheless, this was Turing’s first substantial investigation, the first demonstration of his powers, and was certainly influential in his approach to codebreaking, so it makes a fitting first topic for this chapter. Turing’s single paper on numerical analysis, published in 1948, is not described in detail here. It concerned the potential for errors to propagate and accumulate during large-scale computations; as with everything that Turing wrote in relation to computation it was pioneering, forward-looking, and conceptually sound. There was also, incidentally, an appreciation in this paper of the need for statistical analysis, again harking back to Turing’s earliest work.


Author(s):  
Carleilton Severino Silva

Since 1742, the year in which the Prussian Christian Goldbach wrote a letter to Leonhard Euler with his Conjecture in the weak version, mathematicians have been working on the problem. The tools in number theory become the most sophisticated thanks to the resolution solutions. Euler himself said he was unable to prove it. The weak guess in the modern version states the following: any odd number greater than 5 can be written as the sum of 3 primes. In response to Goldbach's letter, Euler reminded him of a conversation in which he proposed what is now known as Goldbach's strong conjecture: any even number greater than 2 can be written as a sum of 2 prime numbers. The most interesting result came in 2013, with proof of weak version by the Peruvian Mathematician Harald Helfgott, however the strong version remained without a definitive proof. The weak version can be demonstrated without major difficulties and will not be described in this article, as it becomes a corollary of the strong version. Despite the enormous intellectual baggage that great mathematicians have had over the centuries, the Conjecture in question has not been validated or refuted until today.


1991 ◽  
Vol 43 (1) ◽  
pp. 158-181 ◽  
Author(s):  
C. Maclachlan ◽  
A. W. Reid

Let dbe a positive square-free integer and let Od denote the ring of integers in . The groups PSL2(Od) are collectively known as the Bianchi groups and have been widely studied from the viewpoints of group theory, number theory and low-dimensional topology. The interest of the present article is in geometric Fuchsian subgroups of the groups PSL2(Od). Clearly PSL2 is such a subgroup; however results of [18], [19] show that the Bianchi groups are rich in Fuchsian subgroups.


2014 ◽  
Vol 60 ◽  
pp. 127-150 ◽  
Author(s):  
George Bergman ◽  
Trevor Stuart

Paul Cohn was born in Hamburg, where he lived until he was 15 years of age. However, in 1939, after the rise of the Nazis and the growing persecution of the Jews, his parents, James and Julia Cohn, sent him to England by Kindertransport. They remained behind and Paul never saw them again; they perished in concentration camps. In England, being only 15 years old, he was directed to work first on a chicken farm but later as a fitter in a London factory. His academic talents became clear and he was encouraged by the refugee committee in Dorking and by others to continue his education by studying for the English School Certificate Examinations to sit the Cambridge Entrance Examination. He was awarded an Exhibition to study mathematics at Trinity College. After receiving his PhD in 1951, Paul Cohn went from strength to strength in algebra and not only became a world leader in non-commutative ring theory but also made important contributions to group theory, Lie rings and semigroups. He was much admired, and he travelled widely to collaborate with other algebraists. Moreover, he was a great supporter of the London Mathematical Society, serving as its President from 1982 to 1984.


Sign in / Sign up

Export Citation Format

Share Document