Linear elastostatics

Author(s):  
Lallit Anand ◽  
Sanjay Govindjee

In this chapter the basic field equations in terms of displacement, strain, and stress, and typical boundary conditions which are necessary to formulate a complete three-dimensional boundary-value-problem for linear elasticity in the static case (i.e., neglect of inertial terms) are stated. The uniqueness of a solution to such a boundary value problem is discussed. There are a number of alternate ways that one can approach the statement of an elastostatic boundary-value-problem. The first major approach is obtained by reducing the set of field equations by expressing them solely in terms of the displacement field --- the Navier equations --- while in the second major approach the general system of equations may be reformulated by eliminating the displacement and strain fields and casting the system solely in terms of the stress field --- the Beltrami-Michell equations. The special formulation of idealized two-dimensional boundary value problems is presented the two basic theories of plane strain and plane stress for isotropic materials are discussed.

1998 ◽  
Vol 5 (2) ◽  
pp. 121-138
Author(s):  
O. Jokhadze

Abstract Some structural properties as well as a general three-dimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of functions if some conditions are fulfilled.


1999 ◽  
Vol 6 (6) ◽  
pp. 517-524
Author(s):  
M. Basheleishvili

Abstract The first three-dimensional boundary value problem is considered for the basic equations of statics of the elastic mixture theory in the finite and infinite domains bounded by the closed surfaces. It is proved that this problem splits into two problems whose investigation is reduced to the first boundary value problem for an elliptic equation which structurally coincides with an equation of statics of an isotropic elastic body. Using the potential method and the theory of Fredholm integral equations of second kind, the existence and uniqueness of the solution of the first boundary value problem is proved for the split equation.


Author(s):  
Irene M. Gamba

We consider steady potential hydrodynamic-Poisson systems with a dissipation term (viscosity) proportional to a small parameter v in a two- or three-dimensional bounded domain. We show here that for any smooth solution of a boundary value problem which satisfies that the speed, denoted by |∇φv|, has an upper coarse bound , uniform in the parameter v, then a sharper, correct uniform bound is obtained: the viscous speed |∇φv| is bounded pointwise, at points x0 in the interior of the flow domain, by cavitation speed (given by Bernoulli's Law at vacuum states) plus a term of that depends on . The exponent is β = 1 for the standard isentropic gas flow model and β = 1/2 for the potential hydrodynamic Poisson system. Both cases are considered to have a γ-pressure law with 1<γ<2 in two space dimensions and 1 < γ< 3/2 in three space dimensions. These systems have cavitation speeds which take not necessarily constant values. In fact, for the potential hydrodynamic-Poisson systems, cavitation speed is a function that depends on the potential flow function and also on the electric potential.In addition, we consider a two-dimensional boundary value problem which has been proved to have a smooth solution whose speed is uniformly bounded. In this case, we show that the pointwise sharper bound can be extended to the section of the boundary ∂Ω\∂3Ω, where ∂3Ω is called the outflow boundary. The exponent β varies between 1 and 1/8 depending on the location of x0 at the boundary and on the curvature of the boundary at x0. In particular, our estimates apply to classical viscous approximation to transonic flow models.


Sign in / Sign up

Export Citation Format

Share Document