static case
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 72)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Qing-Yu Wang ◽  
Cun Xue ◽  
Chao Dong ◽  
You-He Zhou

Abstract The vortex penetration and vortex dynamics are significantly important to superconducting devices, for example the superconducting cavities, since the vortex motions would create substantial dissipation. In experiments, different kinds of defects, as well as different degrees of surface roughness were observed. By considering these in superconductor-insulator-superconductor (SIS) structures, the vortex penetration and vortex dynamics are very complex due to the interactions with defects and the influence of surface roughness, especially for radio-frequency (RF) magnetic field, which are quite different from ideal defect-free SIS multilayer structures. In this paper, within Ginzburg-Landau theory, we perform numerical simulations to study the effects of nanoscale defects, surface roughness, and cracks in the coating layer on the vortex penetration and superheating field in Nb3Sn-I-Nb multilayer structures exposed to a quasi-static magnetic field. The validations of the numerical simulations are verified by good consistency with previous theoretical results in ideal defect-free SIS multilayer and single Nb structures. Furthermore, we explore the vortex dynamics and induced voltages in SIS multilayer structures exposed to RF magnetic fields for both ideal defect-free structures and real situations including surface roughness. Our numerical simulations indicate that, unlike the quasi-static case, the advantage of SIS multilayer structures over a single Nb structure depends on the degrees of surface roughness as well as the frequency and amplitude of the RF magnetic field. The results of this paper provide deep insight to evaluate the actual performance-limiting of next-generation superconducting radio-frequency (SRF) cavities with different proposed candidate materials, which are quite susceptible to nonideal surface.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In this paper, we consider an extension of the Dynamic Vehicle Routing Problem with Backhauls integrated with two-dimensional loading problem called DVRPB with 2D loading constraints (2L-DVRPB). In the VRPB, a vehicle can deliver (Linehaul) then collect goods from customers (backhaul) and bring back to the depot. Once customer demand is formed by a set of two-dimensional items the problem will be treat as a 2L-VRPB. The 2L-VRPB has been studied on the static case. However, in most real-life application, new customer requests can be happen over time of backhaul and thus perturb the optimal routing schedule that was originally invented. This problem has not been analysed sofar in the literature. The 2L-DVRPB is an NP-Hard problem, so, we propose to use a Genetic algorithm for routing and a packing problems. We applied our approach in a real case study of the Regional Post Office of the city of Jendouba in the North of Tunisia. Results indicate that the AGA approach is considered as the best approach in terms of solutions quality for a real world routing system.


Author(s):  
Z. Yousaf ◽  
M.Z. Bhatti ◽  
M. M. M. Nasir

The concept of complexity for dynamical spherically symmetric dissipative self-gravitating configuration [1] is generalized in the scenario of modified Gauss-Bonnet gravity. For this purpose, a spherically symmetric fluid with locally anisotropic, dissipative, and non-dissipative configuration is considered. We choose the same complexity factor for the structure as we did for the static case, while we consider the homologous condition for the simplest pattern of evolution. In this approach, we formulate structure scalars that demonstrate the essential properties of the system. A fluid distribution that fulfills the vanishing complexity constraint and proceeds homologously corresponds to isotropic, geodesic, homogeneous, and shear-free fluid. In the dissipative case, the fluid is still geodesic but it is shearing, and there is a wide range of solutions. In the last, the stability of vanishing complexity is examined.


J ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 865-880
Author(s):  
Riccardo Scorretti

Coupling of electrical circuits with 2D and 3D computational domains is very important for practical applications. To this aim, the notions of “electrical current” and “voltage” must be defined precisely and linked with local quantities (i.e., fields and potentials) in the computational domain. Apart from the static case, the definition of voltage is more complex than it may appear at a first glance, and it is usually tainted by unspoken and/or not justified assumptions. The purpose of this work is twofold: on one hand, to shed light on the definition and on the physical meaning of voltage in the case of time varying quasi-static fields and, on the other hand, to show how to establish coupling equations between lumped parameters circuit model and 2D/3D computational domains. It is demonstrated that a precise physical significance can be given to the voltage in terms of power balance only (the notion of potential is unnecessary). A couple of original operators which allow to express voltages and currents are introduced. Based on a critical analysis of the research literature, it is shown that existing coupling formulas can all be rewritten as particular cases of these two operators. The developed analysis is independent from any computational method and can be used to devise new coupling formulas.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lihan Liu ◽  
Yi Xue ◽  
Huamin Chen ◽  
Zhuwei Wang ◽  
Chao Fang ◽  
...  

With the development of intelligent transportation system (ITS), owing to its flexible connectivity structures and communication network topologies, connected cruise control (CCC), increasing the situation awareness of the autonomous vehicle without redesigning the other vehicles, is an advanced cruise control technology attracted extensive attention. However, due to the uncertain traffic environment and the movement of the connected vehicles, the leader speed is typically highly dynamic. In this paper, taking the uncertain time-varying leading vehicle velocity and communication delays into consideration, an optimal CCC algorithm is proposed for both near-static case and general dynamic control cases. First, the analysis for discrete-time error dynamics model of the longitudinal vehicle platoon is performed. Then, in order to minimize the error between the desired and actual states, a linear quadratic optimization problem is formulated. Subsequently, in near-static control case, an efficient algorithm is proposed to derive the solution of the optimization problem by two steps. Specifically, the online step calculates the optimal control scheme according to the current states and previous control signals, and the off-line step calculates the corresponding control gain through backward recursion. Then, the results are further extended to the general dynamic control case where the leader vehicle moves at an uncertain time-varying velocity. Finally, simulation results verify the effectiveness of the proposed CCC algorithm.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 483
Author(s):  
Carlos A. R. Herdeiro ◽  
Alexandre M. Pombo ◽  
Eugen Radu

The general relativity vacuum black holes (BHs) can be scalarised in models where a scalar field non-minimally couples to the Gauss-Bonnet (GB) invariant. Such GB scalarisation comes in two flavours, depending on the GB sign that triggers the phenomenon. Hereafter these two cases are termed GB± scalarisation. For vacuum BHs, only GB+ scalarisation is possible in the static case, while GB− scalarisation is spin induced. But for electrovacuum BHs, GB− is also charged induced. We discuss the GB− scalarisation of Reissner-Nordström and Kerr-Newman BHs, discussing zero modes and constructing fully non-linear solutions. Some comparisons with GB+ scalarisation are given. To assess the generality of the observed features, we also briefly consider the GB± scalarisation of stringy dilatonic BHs and coloured BHs which provide qualitative differences with respect to the electrovacuum case, namely on the distribution and existence of regions triggering GB− scalarisation.


Vehicles ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 821-839
Author(s):  
Anil Erkan ◽  
Sebastian Babilon ◽  
David Hoffmann ◽  
Timo Singer ◽  
Tsoni Vitkov ◽  
...  

The purpose of this work is to determine as a function of velocity the minimal roadway luminance that is required to be judged as being bright enough for a driver to perform a nighttime driving task with an adequate feeling of safety. In this context, it shall also be evaluated which areas of the vehicle forefield are most crucial for the driver’s general brightness perception. A field study with 23 subjects and dimmable LED headlights was conducted, in which the subjects were given the task to assess their perceived brightness for different luminance levels caused by the headlights’ low-beam distribution in the vehicle’s forefield on a 5-step rating scale. The experiments were repeated for three different driving velocities of 0 km h−1 (static case), 30 km h−1, and 60 km h−1, respectively. Results for the static case indicate that, for the roadway to be perceived as bright enough by 50% of the subjects, an average roadway luminance of 0.88 cd m−2 is required in an area up to 32 m in front of the vehicle. Furthermore, a significant effect of driving speed is observed. For example, at 60 km h−1, the luminance must be increased to 1.54 cd m−2 to be still perceived as sufficiently bright by 50% of the subjects.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Guo-Ping Li ◽  
Ke-Jian He

AbstractIn this paper, we explore three simple models of accretions on a global monopole black hole in f(R) theory, and numerically study the corresponding observational appearances as seen by an observer located at the asymptotic infinity and the certain region out of black hole. For the thin-disk accretion, the results here show that the brighter lensing ring and the darker photon ring that around black hole shadow, always make a small contribution and a negligible contribution to total observed intensity respectively. While, the direct emission of disk contributes a dominant part, and the size of shadow always depends on the disk’s location. For the static and infalling spherical accretions, it turns out that the radiuses of the shadows and photon spheres are always same for both accretions, which implies that the boundary of shadow represents the signature of the spacetime geometry in this case. However, we also find that the brightness of shadow in infalling accretion is darker than that in static case since the Doppler effect is taken into account. In addition, the effect of the global monopole parameter $$\eta $$ η and f(R) parameter $$\psi _0$$ ψ 0 on observational appearances of black hole are clearly emphasized throughout of this paper. Finally, we conclude that black hole shadows and the related rings with some different observable features can be used for us to distinguish black holes from different gravity theories and set the upper limits to the f(R) parameter $$\psi _0$$ ψ 0 .


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1247
Author(s):  
Juliane Diehm ◽  
Verena Hackert ◽  
Matthias Franzreb

In the last decade, the fabrication of microfluidic chips was revolutionized by 3D printing. It is not only used for rapid prototyping of molds, but also for manufacturing of complex chips and even integrated active parts like pumps and valves, which are essential for many microfluidic applications. The manufacturing of multiport injection valves is of special interest for analytical microfluidic systems, as they can reduce the injection to detection dead volume and thus enhance the resolution and decrease the detection limit. Designs reported so far use radial compression of rotor and stator. However, commercially available nonprinted valves usually feature axial compression, as this allows for adjustable compression and the possibility to integrate additional sealing elements. In this paper, we transfer the axial approach to 3D-printed valves and compare two different printing techniques, as well as six different sealing configurations. The tightness of the system is evaluated with optical examination, weighing, and flow measurements. The developed system shows similar performance to commercial or other 3D-printed valves with no measurable leakage for the static case and leakages below 0.5% in the dynamic case, can be turned automatically with a stepper motor, is easy to scale up, and is transferable to other printing methods and materials without design changes.


Sign in / Sign up

Export Citation Format

Share Document