homogeneous layer
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 334 ◽  
pp. 06005
Author(s):  
Paolo Piccardo ◽  
Roberto Spotorno ◽  
Valeria Bongiorno ◽  
Daniele Paravidino ◽  
Christian Geipel ◽  
...  

An SOFC stack operated for 40,000 hours has been dismantled offering the opportunity to characterize the metallic interconnect. The metal plate was carefully investigated to define the evolution of the surfaces exposed to the air and to the hydrogen electrodes respectively. The observations of the surfaces reveal the stability of the layers applied on top of the rib at the air side while in the bottom of the channels the protective coating (i.e., Co-Mn base spinel oxide) shows large crystals. The cross section allowed to highlight the formation of a rather homogeneous layer of thermal grown oxide between the metal and the coating. The average thickness of the TGO is around 11 μm. The hydrogen side shows a superficial alteration (due to the interaction with the water vapour) changing from the inlet to the outlet where it seems thinner as if the TGO further reacted by forming volatile compounds. The cross section observations confirmed the presence of a porous TGO with a rather high content of manganese in a Cr-Mn spinel oxide. Several spots testifies the zones of contact with the Ni base contacting layer. The cross section corresponding to such zones highlighted the Ni diffusion in the metal substrate.


GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 92-101
Author(s):  
Anton Kushnir ◽  
◽  
Tatiana Burakhovych ◽  
Volodymyr Ilyenko ◽  
Bogdan Shyrkov ◽  
...  

In order to study the deep structure of the southwestern Ukrainian Carpathians, where the Carpathian conductivity anomaly is located, in 2015 and 2020, modern synchronous magnetotelluric studies were carried out on the profiles of Mukachevo-Skole, Seredne-Borynya and Karpatsky at twenty-three points and the spatiotemporal distribution and the electric field on the Earth's surface, which can be used to assess the conductivity and geoelectrical structure of the region, was obtained. Processing of experimental data was performed using the software PRC_MTMV, which provides a common noise-canceling impedance estimation for synchronous magnetotellurical recordings. Curves of apparent electrical resistivity (amplitude values and phases of impedance) from 10 to 10000 s were obtained reliably. A joint analysis of the apparent resistivity and impedance phases and the formal interpretation of the deep magnetotellurical sounding curves using the Niblett transformation indicate the presence of the spatially inhomogeneous conductor both in the earth's crust and in the upper part of the upper mantle. The chain of local conductive sections in the earth's crust coincides with the axial part of the Carpathian conductivity anomaly. High conductivity of the upper mantle was recorded in the Ukrainian Carpathians from the Transcarpathian Depression to the Skiba cover. It is shown that it is not a homogeneous layer, there is a general deepening of the upper edge to the northeast from 40-60 km (Transcarpathian depression) to 90-100 km (Krosno cover). Sharp deepening along the Porkulets and Dukla covers is revealed. Information about the existence of a deep conductor and its parameters should be the basis for quantitative interpretation and construction of the 3D deep geoelectrical model.


2021 ◽  
Vol 2021 (4) ◽  
pp. 104-117
Author(s):  
K.V. Avramov ◽  
◽  
B.V. Uspensky ◽  
I.I. Derevianko ◽  
◽  
...  

A three-layer sandwich plate with a FDM-printed honeycomb core made of polycarbonate is considered. The upper and lower faces of the sandwich are made of a carbon fiber-reinforced composite. To study the response of the sandwich plate, the honeycomb core is replaced with a homogeneous layer with appropriate mechanical properties. To verify the honeycomb core model, a finite-element simulation of the representative volume of the core was performed using the ANSYS software package. A modification of the high-order shear theory is used to describe the structure dynamics. The assumed-mode method is used to simulate nonlinear forced oscillations of the plate. The Rayleigh–Ritz method is used to calculate the eigenfrequencies and eigenmodes of the plate, in which the displacement of the plate points during nonlinear oscillations are expanded. This technique allows one to obtain a finite-degree-of-freedom nonlinear dynamic system, which describes the oscillations of the plate. The frequency response of the system is calculated using the continuation approach applied to a two-point boundary value problem for nonlinear ordinary differential equations and the Floquet multiplier method, which allows one to determine the stability and bifurcations of periodic solutions. The resonance behavior of the system is analyzed using its frequency response. The proposed technique is used to analyze the forced oscillations of a square three-layer plate clamped along the contour. The results of the analysis of the free oscillations of the plate are compared with those of ANSYS finite-element simulation, and the convergence of the results with increasing number of basis functions is analyzed. The comparison shows that the results are in close agreement. The analysis of the forced oscillations shows that the plate executes essentially nonlinear oscillations with two saddle-node bifurcations in the frequency response curve, in which the periodic motion stability of the system changes. The nonlinear oscillations of the plate near the first fundamental resonance are mostly monoharmonic. They may be calculated using the describing function method.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012007
Author(s):  
V P Afanas’ev ◽  
L G Lobanova ◽  
D N Selyakov ◽  
M A Semenov-Shefov

Abstract The paper considers the application of the traditional X-ray photoelectron spectroscopy (XPS) methodology: the Overlayer Thickness Determination for the analysis of coating parameters. In particular situations considered in this work, it is energetically favorable for the atoms of the coating to form clusters, but not be evenly distributed on the surface of the substrate material. The change in the XPS signal is analyzed in situations when the coating is not a plane-parallel homogeneous layer, but an island (cluster) structure. The mathematical model of the XPS signal formation is considered for the case of the cluster covering in the form of parallelepipeds. Photoelectron path distributions (in the coating material) analysis indicated a strong dependence of the signal on the viewing angle. For the purpose of analysis, experimental spectra were obtained for several samples: gold depositions of various thicknesses on a silicon substrate. The spectra were measured for different viewing angles of photoelectrons and interpreted within the Straight Line Approximation (SLA). It is shown that proposed simplest model of an island coating allows to describe the effect of a decrease in the value of the effective average coating thickness, determined in plane-parallel geometry, with an increase in the viewing angle, observed in XPS experiments with angular resolution.


2021 ◽  
Author(s):  
Valery Shcherbakov ◽  
Frédéric Szczap ◽  
Alaa Alkasem ◽  
Guillaume Mioche ◽  
Céline Cornet

Abstract. We performed extensive Monte Carlo (MC) simulations of single-wavelength lidar signals from a plane-parallel homogeneous layer of atmospheric particles and developed an empirical model to account for the multiple scattering in the lidar signals. The simulations have taken into consideration four types of lidar configurations (the ground based, the airborne, the CALIOP, and the ATLID) and four types of particles (coarse aerosol, water cloud, jet-stream cirrus and cirrus). Most of simulations were performed with the spatial resolution of 20 m and the particles extinction coefficient εp between 0.06 km−1 and 1.0 km−1. The resolution was of 5 m for high values of εp (up to 10.0 km−1). The majority of simulations for ground-based and airborne lidars were performed at two values of the receiver field-of-view (RFOV): 0.25 mrad and 1.0 mrad. The effect of the width of the RFOV was studied for the values up to 50 mrad. The proposed empirical model is a function that has only three free parameters and approximates the multiple-scattering relative contribution to lidar signals. It is demonstrated that the empirical model has very good quality of MC data fitting for all considered cases. Special attention was given to the usual operational conditions, i.e., low distances to a particles layer, small optical depths and quite narrow receiver field-of-views. It is demonstrated that multiple scattering effects cannot be neglected when the distance to a particles layer is about 8 km or higher and the full RFOV is of 1.0 mrad. As for the full RFOV of 0.25 mrad, the single scattering approximation is acceptable for aerosols (εp ≲ 1.0 km−1), water clouds (εp ≲ 0.5 km−1), and cirrus clouds (εp ≤ 0.1 km−1). When the distance to a particles layer is of 1 km, the single scattering approximation is acceptable for aerosols and water clouds (εp ≲ 1.0 km−1, both RFOV = 0.25 and RFOV = 1 mrad). As for cirrus clouds, the effect of multiple scattering cannot be neglected even at such low distance when εp ≳ 0.5 km−1.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6862
Author(s):  
Krzysztof Moraczewski ◽  
Andrzej Trafarski ◽  
Rafał Malinowski

The paper presents the results of copper electroless metallization of cellulose paper with the use of a polydopamine coating and silver catalyst. The polydopamine coating was deposited via a simple dip method using a dopamine hydrochloride solution in 10 mM TRIS-HCl buffer with a pH of 8.5. The research showed that as a result of this process, cellulose fibers were covered with a homogeneous layer of polydopamine. The unique properties of the polydopamine coating allowed the reduction of silver ions from silver nitrate solution and the deposition of silver atoms on the paper surface. Deposited silver served as a catalyst in the autocatalytic electroless copper-plating process. The copper layer covered the entire surface of the paper sheet after 5 min of metallization, favorably affecting the electrical properties of this material by lowering the surface resistivity. The deposited copper layer was further characterized by good adhesive strength and high susceptibility to deformation.


2021 ◽  
Vol 11 (19) ◽  
pp. 9141
Author(s):  
Yeqing Jin ◽  
Ruiping Yang ◽  
Hengxu Liu ◽  
Haiwei Xu ◽  
Hailong Chen

Free vibration analyses of lattice sandwich beams with general elastic supports have rarely been discussed in this field’s literature. In this paper, a unified method is proposed to study the free vibration characteristics of lattice sandwich beams under various boundary conditions. The proposed method is to convert the three truss cores of lattice sandwich beams into an equivalent homogeneous layer and introduce two different types of constraint springs to simulate the general elastic support boundary at both ends of lattice sandwich beams. By changing the rigidity of the boundary restraint spring, various boundary conditions can be easily obtained without modifying the solving algorithm and solving process. In order to overcome all the discontinuities or jumps associated with the elastic boundary support conditions, the displacement function of lattice sandwich beams is usually obtained as an improved Fourier cosine series along with four sine terms. On this basis, the unknown series coefficients of the displacement function are treated as the generalized coordinates and solved using the Rayleigh–Ritz method. The correctness of the present method is verified through comparison with existing literature. The calculation results of the present method are highly accurate, indicating that the present method is suitable for analyzing the vibration characteristics of lattice sandwich beams with general elastic supports. In addition, the effects of beam length, panel thickness, core height, radius and truss inclination on the natural frequencies of lattice sandwich beams with arbitrary boundary conditions have been discussed in this paper.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1185
Author(s):  
Ionela Cristina Nica ◽  
Marcela Popa ◽  
Luminita Marutescu ◽  
Anca Dinischiotu ◽  
Simona Liliana Iconaru ◽  
...  

The implant-related infection as a consequence of bacterial adherence and biofilm formation remains one of the main causes of implant failure. Grace to recent advances in materials science, their great mechanical properties and their biocompatibility (both in vitro and in vivo), antibacterial coatings have gradually become a primary component of the global strategy for preventing microbial colonization. In the present work, novel antibacterial coatings containing hydroxyapatite nanoparticles doped with two different concentrations of samarium (5SmHAp and 10SmHAp) were obtained on Si substrates using the dip coating method. The morphology and physicochemical properties of these modified surfaces were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In addition, their antimicrobial effects and biocompatibility were assessed. The results showed a continuous and homogeneous layer, uniformly deposited, with no cracks or impurities. 5SmHAp and 10SmHAp surfaces exhibited significant antibiofilm activity and good biocompatibility without inducing cytotoxic effects in human gingival fibroblasts. All these findings indicate that samarium doped hydroxyapatite coatings could be great candidates for the development of new antimicrobial strategies.


Author(s):  
M. B. Kerimi

Within the framework of the kinetic theory, the interaction of systems of quasiparticles and the exchange of quasiparticles of different types between layers of a plane-parallel solid structure are taken into account. The reasons influencing the propagation of differential fluxes of quasiparticles near each boundary of the structure are indicated. These include not only the appearance of a force field, in particular, electric е∇φ(х) and thermal ∇Т(х), fields near the boundary in equilibrium and its modification when equilibrium is disturbed, but also a change in the coordinate and angular dependence of the relaxation length of fluxes le(x, k, Ω) in the same region. Some modification of the distribution of characteristic thermodynamic quantities in the inhomogeneous region of the layer in comparison with the homogeneous layer also affects the propagation of fluxes. The necessity of a self-consistent solution of the kinetic boundary value problem of the joint propagation of differential fluxes of quasiparticles-a system of equations and integral boundary conditions-is substantiated. Near the boundary and in another inhomogeneous region of the layer thickness, as well as in the thin layer as a whole, in quasiparticles systems, it is proposed to use a specific coordinate distribution of the flux density of thermodynamic quantities over the structure thickness, which is mutually self-consistent with the propagation of the corresponding quasiparticles fluxes. The main conclusion of this work: when developing modern multilayer solid-state structures, especially with thin layers, it is necessary to use the kinetic theory, which adequately takes into account the physical picture that occurs not only in homogeneous and inhomogeneous regions of the thickness of each layer, but also at all boundaries of the structure.


2021 ◽  
pp. 108128652110431
Author(s):  
Rui Cao ◽  
Changwen Mi

This paper solves the frictionless receding contact problem between a graded and a homogeneous elastic layer due to a flat-ended rigid indenter. Although its Poisson’s ratio is kept as a constant, the shear modulus in the graded layer is assumed to exponentially vary along the thickness direction. The primary goal of this study is to investigate the functional dependence of both contact pressures and the extent of receding contact on the mechanical and geometric properties. For verification and validation purposes, both theoretical analysis and finite element modelings are conducted. In the analytical formulation, governing equations and boundary conditions of the double contact problem are converted into dual singular integral equations of Cauchy type with the help of Fourier integral transforms. In view of the drastically different singularity behavior of the stationary and receding contact pressures, Gauss–Chebyshev quadratures and collocations of both the first and the second kinds have to be jointly used to transform the dual singular integral equations into an algebraic system. As the resultant algebraic equations are nonlinear with respect to the extent of receding contact, an iterative algorithm based on the method of steepest descent is further developed. The semianalytical results are extensively verified and validated with those obtained from the graded finite element method, whose implementation details are also given for easy reference. Results from both approaches reveal that the property gradation, indenter width, and thickness ratio all play significant roles in the determination of both contact pressures and the receding contact extent. An appropriate combination of these parameters is able to tailor the double contact properties as desired.


Sign in / Sign up

Export Citation Format

Share Document