Enhancing effects of CO2 on chloroplast regeneration in glucose-bleached cells of Chlorella protothecoides I. Role of non-photosynthetic CO2-fixation in chloroplast regeneration1

1976 ◽  
Vol 17 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Tamiko Oh-hama ◽  
Eiji Hase
2020 ◽  
Vol 5 (1) ◽  
pp. 12-19
Author(s):  
R. G. Gevorgiz ◽  
S. N. Zheleznova

The carbon utilization efficiency is an important characteristic of the cultivated object. Diatom Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin is known to use carbon from aquatic environment quite effectively, as it has many unique carbonic anhydrases and carbon transporters. However, the carbon fixation efficiency for many types of diatoms in culture is still unknown. When calculating the carbon fixation efficiency, researchers use different terminology and methods, and it leads to significant difficulties when comparing the carbon fixation efficiency in the biomass of various types of microalgae. The aims of this study are: 1) to update terms and definitions used in literature on the basis of modern concepts of carbon fixation in microalgae biomass, as well as absorption of inorganic carbon by microalgae culture; 2) to evaluate the carbon fixation efficiency in the biomass of C. closterium diatom under conditions of cumulative cultivation. C. closterium was grown at a temperature of +20 °C on a nutrient medium RS. During the cultivation, the culture was bubbled with air (1.1 L of air per 1 L of culture per minute). The air temperature at the outlet of the suspension was of +19 °C; the maximum productivity of the culture was of 1.254 g·L−1·day−1. According to the results of the CHN analysis, the proportion of carbon in C. closterium dry biomass was of 23 %. Under the conditions of cumulative cultivation in C. closterium, the carbon fixation efficiency in biomass was of 90 %. Compared with other algae species, C. closterium is characterized by a rather high CO2 fixation efficiency. For example, in green microalga Chlorella protothecoides and Ch. vulgaris, the CO2 fixation efficiency was of 20 % and 55.3 %, respectively; in cyanobacteria Spirulina sp. – of 38 %; in red microalgae Porphyridium purpureum – of 69 %. It was observed that to ensure an increase of 1 g of C. closterium dry biomass per day at a temperature of +19 °C, a minimum of 0.46 L of CO2, or 1132 L of air, should be consumed. Possibly, it is high carbon fixation efficiency, as well as low carbon fraction in C. closterium biomass, that explains the high production indices of this species. Under equal conditions of cultivation in terms of light and carbon availability, the productivity of C. closterium can exceed the productivity of other types of microalgae by 5–10 times. So, while Spirulina sp. productivity reaches 0.2 g·L−1·day−1, C. closterium productivity is of 1.254 g·L−1·day−1.


Vegetatio ◽  
1995 ◽  
Vol 121 (1-2) ◽  
pp. 157-174 ◽  
Author(s):  
Paul G. Jarvis
Keyword(s):  

Planta ◽  
1995 ◽  
Vol 196 (2) ◽  
Author(s):  
PamelaJ. Carter ◽  
MalcolmB. Wilkins ◽  
HughG. Nimmo ◽  
CharlesA. Fewson

2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

Abstract Thioester synthesis by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolisms. Although the preceding prebiotic CO2 fixation routes to thioesters are often suggested, none has any experimentally supported evidence. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound CO due to CO2 electroreduction. The resultant partially reduced NiS facilitates thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH. This thioester formation can further be enhanced up to a selectivity of 56% by NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis with the partially reduced NiS could have a direct implication to the autotrophic origin of life.


2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

Thioester synthesis by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolisms. Although the preceding prebiotic CO2 fixation routes to thioesters are often suggested, none has any experimentally supported evidence. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound CO due to CO2 electroreduction. The resultant partially reduced NiS facilitates thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH. This thioester formation can further be enhanced up to a selectivity of 56% by NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis with the partially reduced NiS could have a direct implication to the autotrophic origin of life.<br>


Sign in / Sign up

Export Citation Format

Share Document