scholarly journals Arabidopsis Cell-Free Extract, ACE, a New In Vitro Translation System Derived from Arabidopsis Callus Cultures

2011 ◽  
Vol 52 (8) ◽  
pp. 1443-1453 ◽  
Author(s):  
Katsunori Murota ◽  
Yuka Hagiwara-Komoda ◽  
Keisuke Komoda ◽  
Hitoshi Onouchi ◽  
Masayuki Ishikawa ◽  
...  
2012 ◽  
Vol 53 (3) ◽  
pp. 602-602
Author(s):  
K. Murota ◽  
Y. Hagiwara-Komoda ◽  
K. Komoda ◽  
H. Onouchi ◽  
M. Ishikawa ◽  
...  

RNA ◽  
2001 ◽  
Vol 7 (5) ◽  
pp. 765-773 ◽  
Author(s):  
RICHARD J. JACKSON ◽  
SAWSAN NAPTHINE ◽  
IAN BRIERLEY

RNA ◽  
2008 ◽  
Vol 14 (3) ◽  
pp. 593-602 ◽  
Author(s):  
V. V. Zeenko ◽  
C. Wang ◽  
M. Majumder ◽  
A. A. Komar ◽  
M. D. Snider ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2767-2777 ◽  
Author(s):  
J.L. Villano ◽  
F.N. Katz

Genes capable of translating positional information into regulated growth lie at the heart of morphogenesis, yet few genes with this function have been identified. Mutants in the Drosophila four-jointed (fj) gene show reduced growth and altered differentiation only within restricted sectors of the proximal-distal (PD) axis in the leg and wing, thus fj is a candidate for a gene with this coordination function. Consistent with a position-sensitive role, we show that fj is expressed in a regional pattern in the developing leg, wing, eye and optic lobe. The fj gene encodes a novel type II membrane glycoprotein. When the cDNA is translated in an in vitro translation system in the presence of exogenous microsomal membranes, the intralumenal portion of some of the molecules is cleaved, yielding a secreted C-terminal fragment. We propose that fj encodes a secreted signal that functions as a positive regulator of regional growth and differentiation along the PD axis of the imaginal discs.


2011 ◽  
Vol 7 (3) ◽  
pp. 253-260 ◽  
Author(s):  
Hiroshi Umakoshi ◽  
Tomoyuki Tanabe ◽  
Keishi Suga ◽  
Huong Thi Bui ◽  
Toshinori Shimanouchi ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 911 ◽  
Author(s):  
Kseniya A. Lashkevich ◽  
Valeriya I. Shlyk ◽  
Artem S. Kushchenko ◽  
Vadim N. Gladyshev ◽  
Elena Z. Alkalaeva ◽  
...  

Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3′ UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a “leaky” stop codon context, which likely defines the basis of nonsense suppression.


1981 ◽  
Author(s):  
G M Fuller ◽  
J M Nickerson

Fibrinogen is a hepatically derived plasma glycoprotein that is composed of three pairs of nonidentical chains linked together by complex sets of disulfide bridges. In an effort to understand the molecular and cellular processes of translating and assembling this important multichained protein we have utilized an in vitro translating system using mRNA’s for rat fibrinogen. Highly specific antibodies to fibrinogen and to each chain have been developed and used to immunoprecipitate the nascent Aα, Bβ, and γ polypeptides. We have also used a rat hepatoma cell line which synthesizes and secretes fibrinogen to prepare nonglycosylated but processed fibrinogen subunits. SDS/PAGE analysis of the translation products clearly show that each polypeptide has a “signal” peptide located at its amino terminal end. The size of the signal peptide is different for each chain. These results demonstrate that separate mRNA’s exist for each of the fibrinogen subunits. Temporal analysis of the glycosylation of the Bβ and γ chain reveal that the γ chain receives its Asn-linked carbohydrate as an early cotranslational event. The Bβ chain’s core carbohydrate moiety is near the end of the polypeptide and our evidence shows that the glycosylation event likely occurs posttranslationally. When microsomal membranes are added to an on-going translation system, all three of fibrinogen's polypeptides translocate into the cisternal space, with an apparent equal stiochiometry. Additional experiments suggest that fibrinogen assembly occurs as a cotranslational process.These studies have been supported in part by NIH HL - 16445 and HL 00162.


Sign in / Sign up

Export Citation Format

Share Document