translation termination
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 103)

H-INDEX

59
(FIVE YEARS 5)

2021 ◽  
Vol 16 ◽  
Author(s):  
Yanjuan Cao ◽  
Qiang Zhang ◽  
Zuwei Yan ◽  
Xiaoqing Zhao

Background: Introns are ubiquitous in pre-mRNA but are often overlooked. They also play an important role in the regulation of gene expression. Objective and Method : We mainly use the improved Smith-Waterman local alignment approach to compare the optimal matching regions between introns and mRNA sequences in Caenorhabditis elegans (C. elegans) genes with high and low expression. Results We found that the relative matching frequency distributions of all genes lie exactly between highly and lowly expressed genes, indicating that introns in highly and lowly expressed genes have different biological functions. Highly expressed genes have higher matching strengths on mRNA sequences than genes expressed at lower levels; the remarkably matched regions appear in UTR regions, particularly in the 3'UTR. The optimal matching frequency distributions have obvious differences in functional regions of the translation initiation and termination sites in highly and lowly expressed genes. The mRNA sequences with CpG islands tend to have stronger relative matching frequency distributions, especially in highly expressed genes. Additionally, the sequence characteristics of the optimal matched segments are consistent with those of the miRNAs, and they are considered a type of functional RNA segment. Conclusion: Introns in highly and lowly expressed genes contribute to the recognition translation initiation sites and translation termination sites. Moreover, our results suggest that the potential matching relationships between introns and mRNA sequences in highly and lowly expressed genes are significantly different and indicate that the matching strength correlates with the ability of introns to enhance gene expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanae Sato ◽  
Robert H. Singer

AbstractNonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that eliminates transcripts containing premature termination codons (PTCs). Half-lives of the mRNAs containing PTCs demonstrate that a small percent escape surveillance and do not degrade. It is not known whether this escape represents variable mRNA degradation within cells or, alternatively cells within the population are resistant. Here we demonstrate a single-cell approach with a bi-directional reporter, which expresses two β-globin genes with or without a PTC in the same cell, to characterize the efficiency of NMD in individual cells. We found a broad range of NMD efficiency in the population; some cells degraded essentially all of the mRNAs, while others escaped NMD almost completely. Characterization of NMD efficiency together with NMD regulators in single cells showed cell-to-cell variability of NMD reflects the differential level of surveillance factors, SMG1 and phosphorylated UPF1. A single-cell fluorescent reporter system that enabled detection of NMD using flow cytometry revealed that this escape occurred either by translational readthrough at the PTC or by a failure of mRNA degradation after successful translation termination at the PTC.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7120
Author(s):  
Jing-Jing Peng ◽  
Shi-Yang Yue ◽  
Yu-Hui Fang ◽  
Xiao-Ling Liu ◽  
Cheng-Hua Wang

Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2319
Author(s):  
Tünde Kartali ◽  
Ildikó Nyilasi ◽  
Sándor Kocsubé ◽  
Roland Patai ◽  
Tamás F. Polgár ◽  
...  

We previously screened the total nucleic acid extracts of 123 Mucor strains for the presence of dsRNA molecules without further molecular analyses. Here, we characterized five novel dsRNA genomes isolated from four different Mucor hiemalis strains with next-generation sequencing (NGS), namely Mucor hiemalis virus 1a (MhV1a) from WRL CN(M) 122; Mucor hiemalis virus 1b (MhV1b) from NRRL 3624; Mucor hiemalis virus 2 (MhV2) from NRRL 3616; and Mucor hiemalis virus 3 (MhV3) and Mucor hiemalis virus (MhV4) from NRRL 3617 strains. Genomes contain two open reading frames (ORF), which encode the coat protein (CP) and the RNA dependent RNA polymerase (RdRp), respectively. In MhV1a and MhV1b, it is predicted to be translated as a fusion protein via -1 ribosomal frameshift, while in MhV4 via a rare +1 (or−2) ribosomal frameshift. In MhV2 and MhV3, the presence of specific UAAUG pentanucleotide motif points to the fact for coupled translation termination and reinitialization. MhV1a, MhV2, and MhV3 are part of the clade representing the genus Victorivirus, while MhV4 is seated in Totivirus genus clade. The detected VLPs in Mucor strains were from 33 to 36 nm in diameter. Hybridization analysis revealed that the dsRNA molecules of MhV1a-MhV4 hybridized to the corresponding molecules.


RNA Biology ◽  
2021 ◽  
pp. 1-14
Author(s):  
Alexey Shuvalov ◽  
Ekaterina Shuvalova ◽  
Nikita Biziaev ◽  
Elizaveta Sokolova ◽  
Konstantin Evmenov ◽  
...  

2021 ◽  
Author(s):  
Pratiti Bhadra ◽  
Scott Dos Santos ◽  
Igor Gamayun ◽  
Tillman Pick ◽  
Clarissa Neumann ◽  
...  

The Mycobacterium ulcerans exotoxin, mycolactone, is an inhibitor of co-translational translocation via the Sec61 complex. Mycolactone has previously been shown to bind to, and alter the structure of, the major translocon subunit Sec61α, and change its interaction with ribosome nascent chain complexes. In addition to its function in protein translocation into the ER, Sec61 also plays a key role in cellular Ca2+ homeostasis, acting as a leak channel between the endoplasmic reticulum (ER) and cytosol. Here, we have analysed the effect of mycolactone on cytosolic and ER Ca2+ levels using compartment-specific sensors. We also used molecular docking analysis to explore potential interaction sites for mycolactone on translocons in various states. These results show that mycolactone enhances the leak of Ca2+ ions via the Sec61 translocon, resulting in a slow but substantial depletion of ER Ca2+. This leak was dependent on mycolactone binding to Sec61α because resistance mutations in this protein completely ablated the increase. Molecular docking supports the existence of a mycolactone-binding transient inhibited state preceding translocation and suggests mycolactone may also bind Sec61α in its idle state. We propose that delayed ribosomal release after translation termination and/or translocon “breathing” during rapid transitions between the idle and intermediate-inhibited states allow for transient Ca2+ leak, and mycolactone’s stabilisation of the latter underpins the phenotype observed.


Biology Open ◽  
2021 ◽  
Author(s):  
Neylen del Toro ◽  
Frédéric Lessard ◽  
Jacob Bouchard ◽  
Nasrin Mobasheri ◽  
Jordan Guillon ◽  
...  

The origin and evolution of cancer cells is considered to be mainly fueled by DNA mutations. Although translation errors could also expand the cellular proteome, their role in cancer biology remains poorly understood. Tumor suppressors called caretakers block cancer initiation and progression by preventing DNA mutations and/or stimulating DNA repair. If translational errors contribute to tumorigenesis, then caretakers genes should prevent such errors in normal cells in response to oncogenic stimuli. Here, we show that the process of cellular senescence induced by oncogenes, tumor suppressors or chemotherapeutic drugs is associated to a reduction in translational readthrough (TR) measured using reporters containing termination codons withing the context of both normal translation termination or programmed TR. Senescence reduced both basal TR and TR stimulated by aminoglycosides. Mechanistically, the reduction of TR during senescence is controlled by the RB tumor suppressor pathway. Cells that escape from cellular senescence either induced by oncogenes or chemotherapy have an increased TR. Also, breast cancer cells that escape from therapy-induced senescence express high levels of AGO1x, a TR isoform of AGO1 linked to breast cancer progression. We propose that senescence and the RB pathway reduce TR limiting proteome diversity and the expression of TR proteins required for cancer cell proliferation.


2021 ◽  
pp. 101269
Author(s):  
Ekaterina Shuvalova ◽  
Tatyana Egorova ◽  
Alexander Ivanov ◽  
Alexey Shuvalov ◽  
Nikita Biziaev ◽  
...  

Science ◽  
2021 ◽  
Vol 373 (6557) ◽  
pp. 876-882 ◽  
Author(s):  
Michael R. Lawson ◽  
Laura N. Lessen ◽  
Jinfan Wang ◽  
Arjun Prabhakar ◽  
Nicholas C. Corsepius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document