scholarly journals Corrigendum to: Upper Mantle Mush Zones beneath Low Melt Flux Ocean Island Volcanoes: Insights from Isla Floreana, Galápagos

2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Matthew L M Gleeson ◽  
Sally A Gibson ◽  
Michael J Stock
Keyword(s):  
Author(s):  
Matthew L M Gleeson ◽  
Sally A Gibson ◽  
Michael J Stock

Abstract The physicochemical characteristics of sub-volcanic magma storage regions have important implications for magma system dynamics and pre-eruptive behaviour. The architecture of magma storage regions located directly above high buoyancy flux mantle plumes (such as Kīlauea, Hawai’i and Fernandina, Galápagos) are relatively well understood. However, far fewer constraints exist on the nature of magma storage beneath ocean island volcanoes that are distal to the main zone of mantle upwelling or above low buoyancy flux plumes, despite these systems representing a substantial proportion of ocean island volcanism globally. To address this, we present a detailed petrological study of Isla Floreana in the Galápagos Archipelago, which lies at the periphery of the upwelling mantle plume and is thus characterised by an extremely low flux of magma into the lithosphere. Detailed in situ major and trace element analyses of crystal phases within exhumed cumulate xenoliths, lavas and scoria deposits, indicate that the erupted crystal cargo is dominated by disaggregated crystal-rich material (i.e., mush or wall rock). Trace element disequilibria between cumulus phases and erupted melts, as well as trace element zoning within the xenolithic clinopyroxenes, reveals that reactive porous flow (previously identified beneath mid-ocean ridges) is an important process of melt transport within crystal-rich magma storage regions. In addition, application of three petrological barometers reveal that the Floreana mush zones are located in the upper mantle, at a depth of 23.7 ± 5.1 km. Our barometric results are compared to recent studies of high melt flux volcanoes in the western Galápagos, and other ocean island volcanoes worldwide, and demonstrate that the flux of magma from the underlying mantle source represents a first-order control on the depth and physical characteristics of magma storage.


2020 ◽  
Author(s):  
Nore Stolte ◽  
Junting Yu ◽  
Zixin Chen ◽  
Dimitri A. Sverjensky ◽  
Ding Pan

The water-gas shift reaction is a key reaction in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle, but is little known at extreme pressure-temperature conditions found in Earth’s upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid out of CO and supercritical water at 10∼13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000∼1400 K. Our study suggests that the water-gas shift reaction may not happen in Earth’s upper mantle, and formic acid or formate may be an important carbon carrier, participating in many geochemical processes in deep Earth.<br>


2019 ◽  
Vol 31 (1) ◽  
pp. 37-64
Author(s):  
Woong-Kyu Lee ◽  
Nong-Oh Kim ◽  
Soo-Ok Park
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document