porous flow
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 210 ◽  
pp. 110084
Author(s):  
Hua Li ◽  
Weiyao Zhu ◽  
Hao Niu ◽  
Yubao Gao ◽  
Zhen Chen ◽  
...  
Keyword(s):  

Author(s):  
Yuan Rao ◽  
Zhengming Yang ◽  
Lijing Chang ◽  
Yapu Zhang ◽  
Zhenkai Wu ◽  
...  

AbstractThe release of dissolved gas during the development of gas-bearing tight oil reservoirs has a great influence on the effect of development. In this article, the high-pressure mercury intrusion experiment was carried out in cores from different regions and lithologies of the Ordos Basin and the Sichuan Basin. The objectives are to study the microscopic characteristics of the porous throat structure of these reservoirs and to analyze the porous flow resistance laws of different lithology by conducting a resistance gradient test experiment. A mathematical model is established and the oil production index is corrected according to the experiment results to predict the oil production. The experimental results show that for tight reservoirs in the same area and lithology, the lower the permeability under the same back pressure, the greater the resistance gradient. And for sandstone reservoirs in different areas, the resistance gradients have little difference and the changes in the resistance coefficients are similar. However, limestone under the same conditions supports a much higher resistance gradient than sandstone reservoirs. Furthermore, the experimental results are consistent with the theoretical analysis indicating that the PVT (pressure–volume-temperature) characteristics in the nanoscale pores are different from those measured in the high-temperature, high-pressure sampler. Only when the pressure is less than a certain value of the bubble point pressure, the dissolved gas will begin to separate and generate resistance. This pressure is lower than the bubble point pressure measured in the high-temperature and pressure sampler. The calculation results show that the heterogeneity of limestone reservoirs and the mismatch of fluid storage and flow space will make the resistance, generated by the separation of dissolved gas, have a greater impact on oil production.


2021 ◽  
Author(s):  
Paul Papatzacos

This chapter presents a model developed by the author, in publications dated from 2002 to 2016, on flow in porous media assuming diffuse interfaces. It contains five sections. Section 1 is an Introduction, tracing the origin of the diffuse interface formalism. Section 1 also presents the traditional compositional model, pointing out its emphasis on phases and questioning the concept of relative permeabilities. Section 2 presents the mass, momentum, and energy balance equations, for a multicomponent continuous fluid, in their most general form, at the pore level. The existence of constitutive equations with phase-inducing terms is mentioned, but the equations are not introduced at this level, and phases are not an explicit concern. Section 3 is about the averaging of the pore level equations inside a region containing many pores. There is no explicit mention of phases and therefore not of relative permeabilities. Section 4 is the technical basis from which the constitutive equations of the model arise, and it is shown that many models can exist. Section 5 introduces constitutive equations and presents a minimal model for multicomponent, multiphase, and thermal flow in neutrally wetting porous media, i.e., a model with a minimal amount of phenomenological parameters.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3121
Author(s):  
Yuan Rao ◽  
Zhengming Yang ◽  
Yapu Zhang ◽  
Zhenkai Wu ◽  
Yutian Luo ◽  
...  

The separation of solution gas has great influence on the development of gas-bearing tight oil reservoirs. In this study, physical simulation and high-pressure mercury intrusion were used to establish a method for determining the porous flow resistance gradient of gas-bearing tight oil reservoirs. A mathematical model suitable for injection–production well networks is established based on the streamline integral method. The concept of pseudo-bubble point pressure is proposed. The experimental results show that as the back pressure decreases from above the bubble point pressure to below the bubble point pressure, the solution gas separates out. During this process, the porous flow resistance gradient is initially equal to the threshold pressure gradient of the oil single-phase fluid, then it becomes relatively small and stable, and finally it increases rapidly and exponentially. The lower the permeability, the higher the pseudo-bubble point pressure, and the higher the resistance gradient under the same back pressure. For tight reservoirs, the production pressure should be maintained above the pseudo-bubble point pressure when the permeability is lower than a certain value. When the permeability is higher than a certain value, the pressure can be reduced below the pseudo-bubble point pressure, and there is a reasonable range. The mathematical results show that after degassing, the oil production rate and the effective utilization coefficient of oil wells decline rapidly. These declines occur later and have a flat trend for high permeability formations, and the production well pressure can be reduced to a lower level. Fracturing can effectively increase the oil production rate after degassing. A formation that cannot be utilized before fracturing because of the blocked throats due to the separation of the solution gas can also be utilized after fracturing. When the production well pressure is lower than the bubble point pressure, which is not too large, the fracturing effect is better.


2021 ◽  
Author(s):  
Petra Maierová ◽  
Pavlína Hasalová ◽  
Karel Schulmann

<p>Melting of the continental crust and subsequent melt transport has been most thoroughly described in the case of metasedimentary rocks. In these rocks segregation and migration of melt occur either through an interconnected network of veins and melt-rich layers (leucosome) or in form of diapirs. For these rocks, porous flow of melt at grain scale is mostly regarded only as a transient stage of separation of melt from the solid rock.</p><p>An entirely different style of melting and melt transport occurs in the case of felsic metaigneous rocks. We use the example from the Bohemian Massif, the eastern European Variscan belt, where metaigneous migmatites were studied in large detail. Here, melt did not segregate from the solid rock but migrated pervasively along most of the grain boundaries and equilibrated with the host rock. This equilibration resulted in formation of a continuous sequence of texturally, geochemically and compositionally different migmatites.</p><p>The question arises, what are the conditions and driving forces for this unusual behavior. We attempt to address this question by means of numerical modeling of two-phase flow (i.e. flow of porous solid matrix and melt), using the open-source finite-element ASPECT code (aspect.geodynamics.org). Most previous numerical studies of this process were either purely generic or focused on the melting of the mantle. In order to study this process in crustal conditions, we set up a 2D crustal-scale thermo-mechanical model that includes melting and freezing. We investigate the role of material properties (viscosity, solidus and liquidus temperatures, solid matrix permeability, melt composition) and thermal and velocity boundary conditions, as well as the effect of grid resolution. The results are discussed in terms of realistic parameter values and possible styles of melt migration and deformation of the matrix.</p>


Sign in / Sign up

Export Citation Format

Share Document