volcanic field
Recently Published Documents


TOTAL DOCUMENTS

1429
(FIVE YEARS 329)

H-INDEX

65
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Agathe Defourny ◽  
Pierre-Henri Blard ◽  
Laurent Zimmermann ◽  
Patrick Jobé ◽  
Arnaud Collignon ◽  
...  

Abstract. Natural CO2-rich groundwaters of eastern Belgium have been known for centuries although the exact origin of the gas they contained was still unclear. This paper presents the results of a sampling campaign in the area (Spa, Stoumont, Malmedy) where 30 samples of both carbogazeous and non-carbogazeous groundwaters have been analyzed for major elements, CO2 content and carbon isotopic composition. Among them, 13 samples were analyzed for 3He / 4He and 4He / 20Ne ratios. The combination of δ13C and 3He / CO2 ratios have shown with a high level of confidence that the CO2 in groundwater from springs and boreholes has a mantellic origin, and can very likely be attributed to the degassing of the neighboring and still buoyant Eifel mantle plume, located at a distance of 100 km eastwards. The identity and nature of the deep-rooted fractures that act as CO2 transport pathway to the surface are still to be clarified, but several major thrust faults exist in the Rhenish Massif and could connect the Eifel volcanic field with the studied area.


Boreas ◽  
2021 ◽  
Author(s):  
Jago J. Birk ◽  
Kristina Reetz ◽  
Frank Sirocko ◽  
David K. Wright ◽  
Sabine Fiedler

2021 ◽  
Author(s):  
Fernanda Silva Santos ◽  
Carlos Sommer ◽  
Mauricio Haag ◽  
Walter Báez ◽  
Alberto Caselli ◽  
...  

Monogenetic volcanoes are among the most common volcanic landforms on Earth. The morphology and distribution of small volcanoes can provide important information about eruption dynamics and tectonics. The Southern Volcanic Zone of the Andes (CSVZ) comprises one of the most active magmatic regions on Earth. Characterized by the presence of polygenetic volcanoes and calderas in a complex tectonic setting, this region also hosts hundreds of small, back-arc monogenetic volcanoes. In this contribution, we apply a Geographic Information System (GIS) that combines imagery data and digital elevation models to establish the first comprehensive dataset of monogenetic volcanoes in the CSVZ (38° to 40° S), exploring their eruption dynamics and relationship to tectonic and structural processes. Combining spatial analysis and geomorphological observations, we identify the presence of 356 monogenetic volcanoes distributed into nine clusters, now grouped in the Zapala Volcanic Field (ZVF). The ZVF is marked by the predominance of cinder cones (80%) followed by phreatomagmatic volcanoes (20%), suggesting some influence of external water in the eruption dynamics. Generally, monogenetic vents present a clear association with local and regional lineaments, suggesting a strong structural control on the occurrence of the monogenetic deposits. The higher vent densities are observed in the southern Loncopué Though, an important extensional feature related to tearing of the subducted Nazca plate underneath the South American Plate. Morphometric parameters of cinder cones indicate variable stress orientations in the CSVZ that possibly result from the oblique tectonics in the region. From north to south, the maximum principal stress rotates from NE-SW to E-W and becomes progressively less constrained as it distances from the current magmatic arc. Based on the relative ages, we map the evolution of monogenetic volcanism through time. Our results suggest a waning in the monogenetic activity in ZVF over time. When compared to monogenetic fields in the Central Andes, the ZVF is marked by higher vent densities and number of phreatomagmatic landforms, with the absence of lava domes. This ultimately reflects the contrasting crustal structure and climate conditions of these two regions.


Lithos ◽  
2021 ◽  
pp. 106563
Author(s):  
Francois J.P. Lötter ◽  
Nils Lenhardt ◽  
Lothar Viereck ◽  
Carsten Münker ◽  
Chris S. Marien ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document