residual gravity
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
I. N. Ognev ◽  
◽  
E. V. Utemov ◽  
D. K. Nurgaliev ◽  
◽  
...  

In the last two decades in conjunction with the development of satellite gravimetry, the techniques of regional-scale inverse and forward gravity modeling started to be more actively incorporated in the construction of crustal and lithospheric scale models. Such regional models are usually built as a set of layers and bodies with constant densities. This approach often leads to a certain difference between the initially used measured gravity field and a gravity field that is produced by the model. One of the examples of this kind of models is a recent lithospheric model of the Volgo-Uralian subcraton. In the current study, we are applying the method of «native» wavelet transform to the residual gravity anomaly for defining the possible lateral density variations within the lithospheric layers of Volgo-Uralia. Keywords: wavelet transform; gravity field inversion; forward gravity modeling; Volgo-Uralian subcraton; satellite gravimetry.


2021 ◽  
Vol 51 (4) ◽  
pp. 345-371
Author(s):  
Giovanna BERRINO ◽  
Peter VAJDA ◽  
Pavol ZAHOREC ◽  
Antonio G. CAMACHO ◽  
Vincenzo DE NOVELLIS ◽  
...  

We analyse spatiotemporal gravity changes observed on the Ischia island (Italy) accompanying the destructive earthquake of 21 August 2017. The 29 May 2016 to 22 September 2017 time-lapse gravity changes observed at 18 benchmarks of the Ischia gravimetric network are first corrected for the gravitational effect of the surface deformation using the deformation-induced topographic effect (DITE) correction. The co-seismic DITE is computed by Newtonian volumetric integration using the Toposk software, a high-resolution LiDAR DEM and the co-seismic vertical displacement field derived from Sentinel-1 InSAR data. We compare numerically the DITE field with its commonly used Bouguer approximation over the island of Ischia with the outcome that the Bouguer approximation of DITE is adequate and accurate in this case. The residual gravity changes are then computed at gravity benchmarks by correcting the observed gravity changes for the planar Bouguer effect of the elevation changes at benchmarks over the same period. The residual gravity changes are then inverted using an inversion approach based on model exploration and growing source bodies, making use of the Growth-dg inversion tool. The found inversion model, given as subsurface time-lapse density changes, is then interpreted as mainly due to a co-seismic or post-seismic disturbance of the hydrothermal system of the island. Pros and weak points of such interpretation are discussed.


2021 ◽  
Author(s):  
◽  
Stephen Jenkins

<p>The second phase of drilling into the Alpine Fault (DFDP-2), was completed in the Whataroa River valley, a former glacial valley located in central Westland, South Island, New Zealand. The site is located next to a steep hillside on the hanging-wall, ~1 km southeast of the mapped surface trace of the Alpine Fault. Projection of the hillside suggests a sediment thickness of 100 ± 40 m at the drill site; however, the sediment thickness was approximately double pre-drill estimates. Additionally, the surface expression and shallow geometry of the Alpine Fault in the Whataroa River valley, is not well-defined due to post-glacial burial of the fault zone. This thesis describes a gravity study designed to better constrain sub-surface structure beneath the DFDP-2 drill site and across the Alpine Fault.  During this study, 466 new high-precision gravity observations were collected (standard error = 0.015 mGal) and amalgamated with 134 existing gravity stations, yielding comprehensive coverage of gravity data across the study area. A high density of observations was achieved within pre-determined zones, in addition to regional measurements so that residual gravity anomaly maps could be produced. The maps reveal: a negative residual gravity anomaly interpreted as a dextrally-offset glacial channel at least 350-450 m deep; steep localised gravity gradients near the Alpine Fault and DFDP-2 drill site that are interpreted as faulted and/or eroded boundaries; and a negative gravity anomaly adjacent to the DFDP-2 drill site that is interpreted as the deepest point of an over-deepened glacial lake.  Gravity models were used to estimate the bedrock-sediment interface geometry near the DFDP-2 drill site and Alpine Fault. Structural inversion of the density boundary next to the drill site suggests either a moderately-dipping reverse fault or sub-vertical erosional wall exists beneath the hillside. Additional constraints on physical properties from direct density measurements or seismic velocity determinations and direct constraints on sediment thickness and layer geometry from seismic surveys will in future allow this new high-precision gravity dataset to be modelled more effectively.</p>


2021 ◽  
Author(s):  
◽  
Stephen Jenkins

<p>The second phase of drilling into the Alpine Fault (DFDP-2), was completed in the Whataroa River valley, a former glacial valley located in central Westland, South Island, New Zealand. The site is located next to a steep hillside on the hanging-wall, ~1 km southeast of the mapped surface trace of the Alpine Fault. Projection of the hillside suggests a sediment thickness of 100 ± 40 m at the drill site; however, the sediment thickness was approximately double pre-drill estimates. Additionally, the surface expression and shallow geometry of the Alpine Fault in the Whataroa River valley, is not well-defined due to post-glacial burial of the fault zone. This thesis describes a gravity study designed to better constrain sub-surface structure beneath the DFDP-2 drill site and across the Alpine Fault.  During this study, 466 new high-precision gravity observations were collected (standard error = 0.015 mGal) and amalgamated with 134 existing gravity stations, yielding comprehensive coverage of gravity data across the study area. A high density of observations was achieved within pre-determined zones, in addition to regional measurements so that residual gravity anomaly maps could be produced. The maps reveal: a negative residual gravity anomaly interpreted as a dextrally-offset glacial channel at least 350-450 m deep; steep localised gravity gradients near the Alpine Fault and DFDP-2 drill site that are interpreted as faulted and/or eroded boundaries; and a negative gravity anomaly adjacent to the DFDP-2 drill site that is interpreted as the deepest point of an over-deepened glacial lake.  Gravity models were used to estimate the bedrock-sediment interface geometry near the DFDP-2 drill site and Alpine Fault. Structural inversion of the density boundary next to the drill site suggests either a moderately-dipping reverse fault or sub-vertical erosional wall exists beneath the hillside. Additional constraints on physical properties from direct density measurements or seismic velocity determinations and direct constraints on sediment thickness and layer geometry from seismic surveys will in future allow this new high-precision gravity dataset to be modelled more effectively.</p>


2021 ◽  
Vol 11 (20) ◽  
pp. 9462
Author(s):  
José Maringue ◽  
Esteban Sáez ◽  
Gonzalo Yañez

The study of site amplification effects is crucial to assess earthquake hazards that can produce great damage in urban structures. In this context, the gravity and the ambient noise horizontal-to-vertical spectral ratio (H/V) are two of the most used geophysical methods to study the properties of the subsoil, which are essential to estimate seismic amplification. Even though these methods have been used complementarily, a correlation between them has not been thoroughly studied. Understanding this correlation and how it depends on geology could be important to use one method as an estimator of the other and to make a distinction between the seismic and gravimetric basement. In this research, a comparison between the residual gravity anomaly and the H/V predominant period is performed using a long dataset from different projects on sedimentary basins in a group of the most important cities in Chile. To simplify the geological information, a seismic classification is used for soils, which considers the Vs30 and the predominant period of vibration (T0). The results of this comparison show a direct correlation between both parameters, the higher the negative residual gravity anomaly the higher the H/V predominant period. This correlation improves when only soft soils are considered, increasing the R2 value in more than a 50% in all the individual cities with respect to the overall correlation. When all the cities are considered, the R2 value for soft soils increases up to 0.87. These results suggest that the ideal geological background for this correlation is when a soft soil layer overlies a homogeneous bedrock. Heterogeneities in the bedrock and in the soil column add dispersion to the correlation. Additionally, the comparison between the depth to basement inferred by both methods show differences of less than 15% in soft sites; in denser sites, the difference increases up to 30% and the definition of a clear H/V peak is more difficult. In general, the gravimetric basement is deeper than the seismic one. However, gravimetric depths to basement can be under/over-estimated in zones with a heterogeneous soil column.


2021 ◽  
Vol 54 (2C) ◽  
pp. 29-38
Author(s):  
Wadhah Mahmood Shakir AL-Khafaji

This research deals with the processing and analyzing of magnetic and gravitational data for an area covering the region of Habbanieyah - Razzaza Lakes and its adjacent areas. The study includes data processing and mapping of the total gravity and magnetic anomalies for only the concerned region, then separating the residual anomalies by adopting the polynomial regression graphical method. The residual gravity anomaly reflects the variations of rock densities within the sedimentary cover. The horizontal gradient filter has been applied to the residual gravity anomaly in order to conduct the locations of fault planes within the sedimentary cover where sudden variations of gravity field take place. The quantitative interpretation for both gravity and magnetic anomalies yielded a preliminary determination for the depth to the center of major faults within the sedimentary cover. By constructing a gravity model along a profile which directed NE-SW and passing through the middle part of the study region, depth to the center of the effective faults found. This depth variation is due to the effect of tectonic activity which produced a set of faults, such faults caused the upward and downward structural motions and were responsible for positioning the deep high density causative slabs of bedrock. The residual magnetic field quantitative interpretation along two profiles crosses over anomalies at the NE and SW parts of the region yielded the depth to the top of magnetized basement rocks. The difference in depth of the basement rocks and the shifted anomaly locations reflects the effect of tectonic activity which may relate to a strike slip faulting in the higher depths.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
R. Plata-Martinez ◽  
S. Ide ◽  
M. Shinohara ◽  
E. S. Garcia ◽  
N. Mizuno ◽  
...  

AbstractThe Guerrero seismic gap is presumed to be a major source of seismic and tsunami hazard along the Mexican subduction zone. Until recently, there were limited observations at the shallow portion of the plate interface offshore Guerrero, so we deployed instruments there to better characterize the extent of the seismogenic zone. Here we report the discovery of episodic shallow tremors and potential slow slip events in Guerrero offshore. Their distribution, together with that of repeating earthquakes, seismicity, residual gravity and bathymetry, suggest that a portion of the shallow plate interface in the gap undergoes stable slip. This mechanical condition may not only explain the long return period of large earthquakes inside the gap, but also reveals why the rupture from past M < 8 earthquakes on adjacent megathrust segments did not propagate into the gap to result in much larger events. However, dynamic rupture effects could drive one of these nearby earthquakes to break through the entire Guerrero seismic gap.


2021 ◽  
Author(s):  
Ahmad Khoshnevis

In this work, a typical thermodiffusion experiment on a binary mixture is simulated numerically using a two-dimensional computational fluid dynamics (CFD) code. Three scenarios for gravity have been studied: residual, pure oscillatory, and microgravity micro-accelerations. It was found that less separation of mixture components in the presence of strong gravity fields is due to the formation of buoyancy-driven flows. For the case of pure oscillatory gravity, the effects of the frequency and amplitude are discussed in detail. A critical vibrational Rayleigh number is proposed above which the diffusion process is highly affected by the external excitation. For the case of the microgravity environment, quasi-steady accelerations and g-jitter, both of which are found on the International Space Station, have been considered. Results show g-jitter has a minimal effect on the thermodiffusion experiment. The effects of the residual gravity field were also found to be insignificant in stimulating a strong convection flow.


2021 ◽  
Author(s):  
Elalami Asmae

The goal of this thesis is to study the effect of residual gravity on crystal growth of Silicon Germanium GE0.98 Si0.02 using the Traveling Heater Method (THM). This method has proven to be one of the most efficient techniques to grow high-quality crystals because it can be grown at relatively low temperatures compared to existing crystal growth techniques. Yet, because of natural convection due to earth's gravity, imperfection in terms of silicon distribution along the growth interface occurs. By growing crystals in a space environment, residual gravity represented by a static microgravity component and a sinusoidal component would decrease the intensity of the convective flow, which in return would lead to a more uniform silicon distribution. However, g-jitter fluctuation has proven to have a noticeable effect on the silicon distribution. Therefore, as an initial step to understand the behavior of crystal growth in space, each component of the g-jitter force will be studied thoroughly. The momentum, mass and energy equations, representing the 3D TSM model, were solved using finite element means. The preliminary results indicate that the complexity and the intensity of the silicon distribution along the growth interface are proportional to the convective flow, that partially controls the migration of silicon. Therefore, the quality of the crystal growth is assessed based on the behavior of the flow along the solvent regime. Based on the imposed static gravity in the range of 10-6 go to 10-3 go, the flow was determined to be in a diffusion mode with a velocity ranging from 10-6 cm/sec to 10-3 cm/sec. As a matter of fact, the flow intensity was noted to be positively proportional to the dominant component of both the static and the amplitude of the imposed g-jitter and negatively proportional to the frequency of the sinusoidal g-jitter. Consequently, realistic space growth conditions have proven to be an effective way of producing a homogeneous crystal since a flawless crystal silicon distribution is obtained at the growth interface.


Sign in / Sign up

Export Citation Format

Share Document