scholarly journals Processes controlling seasonality and spatial distribution of Centropages typicus: a modeling study in the Gulf of Maine/Georges Bank region

2011 ◽  
Vol 34 (1) ◽  
pp. 18-35 ◽  
Author(s):  
C. Stegert ◽  
R. Ji ◽  
N. Li ◽  
C. S. Davis
2015 ◽  
Vol 72 (9) ◽  
pp. 2549-2568 ◽  
Author(s):  
R. G. Lough ◽  
T. Kristiansen

Abstract Environmental conditions during the pelagic juvenile cod period determine their fitness to survive settlement as demersal juveniles (0-group) and recruitment. This study examines the potential growth of pelagic juvenile cod in five areas of the New England Shelf based on time series of zooplankton and ocean temperature from surveys. An individual-based model was used to estimate the temporal variation in growth of juvenile cod at each survey station based on available prey of appropriate sized copepods of Calanus finmarchicus, Pseudocalanus spp., Centropages typicus, and Centropages hamatus. Mean juvenile cod growth was low (1–7% d−1) during January–February and March–April time series across all areas, Gulf of Maine (GOM), Eastern Georges Bank, Western Georges Bank, southern New England to Middle Atlantic Bight (MAB). Growth increased significantly in May–June with the seasonal increase in copepod density and temperature generally from South to North. The 1990–1999 warm years had the highest growth of 12–14% d−1 compared with the cooler 2000–2006 years and colder 1978–1989 years of similarly lower growth of 8–11% d−1. Growth in the MAB stayed the same 13% d−1 as in 1990–1999, whereas GOM growth decreased significantly to ∼6% d−1. High prey densities during May–June 1990–1999 for Georges Bank and GOM, followed by a strong decrease in 2000–2006 may explain the decrease in growth during the same periods. While all four copepod species contributed to potential growth, C. typicus, a more southern species, could be the more important prey for juveniles in the coastal areas during all months in contrast to Pseudocalanus spp. for the larvae. Centropages typicus also is the most adaptable and likely species able to expand and thrive under warmer climatic conditions, which could be of significance to future recruitment. Age-1 recruitment for Georges Bank cod was found to be related to juvenile growth.


2007 ◽  
Vol 27 (19) ◽  
pp. 2486-2512 ◽  
Author(s):  
Charles A. Stock ◽  
Dennis J. McGillicuddy ◽  
Donald M. Anderson ◽  
Andrew R. Solow ◽  
Richard P. Signell

2018 ◽  
Vol 76 (5) ◽  
pp. 163-215 ◽  
Author(s):  
Elizabeth J. Wallace ◽  
Lev B. Looney ◽  
Donglai Gong

Increasing attention is being placed on the regional impact of climate change. This study focuses on the decadal scale variabilities of temperature and salinity in the Mid-Atlantic Bight (MAB), Georges Bank (GB), and Gulf of Maine (GOM) from 1977 to 2016 using hydrographic survey data from the National Oceanic and Atmospheric Administration (NOAA) Northeast Fisheries Science Center. The MAB (as defined by the shelf regions from Cape Hatteras to Cape Cod) experienced warming rates of 0.57 °C per decade during the Winter/Spring season (Jan–Apr) and 0.47 °C per decade during the Fall/Winter season (Sep–Dec). The GOM and GB, on the other hand, warmed at approximately half the rate of the MAB over the same time span (1977–2016). We found that rates of warming vary on decadal time scales. From 1977 to 1999, significant temperature increases (> 0.6 °C/decade) were found in the southern regions of the MAB during the Winter/Spring season. During the same period, significant freshening (stronger than– 0.2/decade) was found in GB and the northern regions of the MAB during the Winter/Spring and Summer seasons. From 1999 to 2016, on the other hand, we found no significant trends in temperature and few significant trends in salinity with the exceptions of some northern MAB regions showing significant salting. Interannual variability in shelf salinity can in part be attributed to river discharge variability in the Hudson River and Chesapeake Bay. However, decadal scale change in shelf salinity cannot be attributed to changes in river discharge as there were no significant decadal scale changes in river outflow. Variability in along-shelf freshwater transport and saline intrusions from offshore were the likely drivers of long-term changes in MAB shelf-salinity.


Sign in / Sign up

Export Citation Format

Share Document