range shift
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 84)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Deborah Zani ◽  
Veiko Lehsten ◽  
Heike Lischke

Abstract. The prediction of species geographic redistribution under climate change (i.e. range shifts) has been addressed by both experimental and modelling approaches and can be used to inform efficient policy measures on the functioning and services of future ecosystems. Dynamic Global Vegetation Models (DGVMs) are considered state-of-the art tools to understand and quantify the spatio-temporal dynamics of ecosystems at large scales and their response to changing environments. They can explicitly include local vegetation dynamics relevant to migration (establishment, growth, seed production), species-specific dispersal abilities and the competitive interactions with other species in the new environment. However, the inclusion of more detailed mechanistic formulations of range shift processes may also widen the overall uncertainty of the model. Thus, a quantification of these uncertainties is needed to evaluate and improve our confidence in the model predictions. In this study, we present an efficient assessment of parameter and model uncertainties combining low-cost analyses in successive steps: local sensitivity analysis, exploration of the performance landscape at extreme parameter values, and inclusion of relevant ecological processes in the model structure. This approach was tested on the newly-implemented migration module of the state-of-the-art DGVM, LPJ-GM 1.0. Estimates of post-glacial migration rates obtained from pollen and macrofossil records of dominant European tree taxa were used to test the model performance. The results indicate higher sensitivity of migration rates to parameters associated with the dispersal kernel (dispersal distances and kernel shape) compared to plant traits (germination rate and maximum fecundity) and highlight the importance of representing rare long-distance dispersal events via fat-tailed kernels. Overall, the successful parametrization and model selection of LPJ-GM will allow simulating plant migration with a more mechanistic approach at larger spatial and temporal scales, thus improving our efforts to understand past vegetation dynamics and predict future range shifts in a context of global change.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Alice Maria Almeida ◽  
Maria João Martins ◽  
Manuel Lameiras Campagnolo ◽  
Paulo Fernandez ◽  
Teresa Albuquerque ◽  
...  

AbstractClimate change is a challenge for forests in the coming decades, with a major impact on species adaptation and distribution. The Mediterranean Basin is one of the most vulnerable hotspots for biodiversity conservation under climate change in the world. This research aimed at studying a Mediterranean species well adapted to the region: the Arbutus unedo L. (strawberry tree). The MaxEnt, a presence-only species-distribution software, was used to model A. unedo’s environmental suitability. The current species potential distribution was accessed based on actual occurrences and selected environmental variables and subsequently projected for the Last Glacial Maximum (LGM), the Mid-Holocene (MH), and the years 2050 and 2070, considering the two Representative Concentration Pathways: RCP4.5 and RCP8.5. Results from the LGM projection suggest the presence of refugia in the core of the Mediterranean Basin, in particular the Iberian Peninsula (IP). The projections for the MH indicate increasing climatic suitability for the species and an eastward expansion, relatively to LGM. The predicted future environmental changes will most likely act as a catalyst for suitable habitat loss and a range shift towards the North is likely to occur.


2022 ◽  
Author(s):  
Paul Pop ◽  
Kuldeep Singh Barwal ◽  
Randeep Singh ◽  
Puneet Pandey ◽  
Harminder Pal Singh ◽  
...  

Vagrans egista sinha (Kollar, [1844]), the Himalayan Vagrant is a subspecies of Nymphalid (Brush-footed) butterflies spread across Asia, whose western limit is in the north-west India. Observations of this subspecies have considerably increased over the past half-a-decade, with a spike in new sightings to the west of their previously known range. This has been considered as a range extension. The current study reports new records of this species from Bilaspur District, Himachal Pradesh, India (which are the first records for the district), through systematic and opportunistic sampling. This raises the question of whether the purported range extension towards the west could instead be a range shift or vagrancy, and whether there is any shift in elevational ranges in the populations across their known range. Questions pertaining to spatial differences in elevational ranges and seasonal variation, across their range, also piqued our curiosity. Using data from academic sources (such as published literature and museum collections), supplemented by data from public participation in scientific research and personal observations, these research questions are addressed. The accuracy of results when using citizen science data is also explored using the same dataset, focused on the impact of method of extraction of coordinates, and elevation derived from it under different scenarios. It was discovered that there has not been a range shift (either longitudinal or latitudinal) and observations do not suggest vagrancy but a case of range extension. Other results indicated that there was no climb of population to higher elevations, no spatial differences in elevational ranges in the populations, or seasonal variation in activities across their range. It was also discovered that the method of data collection by, and extraction from, citizen science databases, can influence the accuracy of the results. Some problems involved in collecting data are discussed, and remedial solutions are suggested.


2022 ◽  
Vol 268 ◽  
pp. 112773
Author(s):  
Shengwei Zong ◽  
Jonas J. Lembrechts ◽  
Haibo Du ◽  
Hong S. He ◽  
Zhengfang Wu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Angus Atkinson ◽  
Simeon L. Hill ◽  
Christian S. Reiss ◽  
Evgeny A. Pakhomov ◽  
Gregory Beaugrand ◽  
...  

Author(s):  
Devin Hymers ◽  
Eva Marie Kasanda ◽  
Vinzenz Bildstein ◽  
Joelle Easter ◽  
Andrea Richard ◽  
...  

Abstract Heavy-ion therapy, particularly using scanned (active) beam delivery, provides a precise and highly conformal dose distribution, with maximum dose deposition for each pencil beam at its endpoint (Bragg peak), and low entrance and exit dose. To take full advantage of this precision, robust range verification methods are required; these methods ensure that the Bragg peak is positioned correctly in the patient and the dose is delivered as prescribed. Relative range verification allows intra-fraction monitoring of Bragg peak spacing to ensure full coverage with each fraction, as well as inter-fraction monitoring to ensure all fractions are delivered consistently. To validate the proposed filtered Interaction Vertex Imaging method for relative range verification, a 16O beam was used to deliver 12 Bragg peak positions in a 40 mm poly-(methyl methacrylate) phantom. Secondary particles produced in the phantom were monitored using position-sensitive silicon detectors. Events recorded on these detectors, along with a measurement of the treatment beam axis, were used to reconstruct the sites of origin of these secondary particles in the phantom. The distal edge of the depth distribution of these reconstructed points was determined with logistic fits, and the translation in depth required to minimize the χ2 statistic between these fits was used to compute the range shift between any two Bragg peak positions. In all cases, the range shift was determined with sub-millimeter precision, to a standard deviation of the mean of 220(10) μm. This result validates filtered Interaction Vertex Imaging as a reliable relative range verification method, which should be capable of monitoring each energy step in each fraction of a scanned heavy-ion treatment plan.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1543
Author(s):  
Kaidi Li ◽  
Guangfu Zhang

Heritage trees have important ecological, historical, and landscape values in cities. Rapid urbanization may cause dramatic change of ecosystem functions of cities, thereby inevitably affecting the growth performance of ancient trees. However, few studies have explored their species diversity and spatial differentiation on the medium scale in the scenario of urbanization in China. Here, we took Jiangsu Province in China, with developed economy in recent decades, as a typical case. Based on the provincial forest inventory data, we addressed the abundance, species richness, tree density, and species diversity of ancient trees in 13 cities, and their tree habitat, growth status, and tree age, as well. Then, we compared the spatial differentiation of tree attributes by 13 districts and nine tree habitats. We also applied detrended correspondence analysis (DCA) and redundancy analysis (RDA) to determine the leading factor influencing their distribution pattern. The 7678 heritage trees in Jiangsu belonged to 215 species. More than half of the trees were native with domination by Ginkgo biloba. Villages and farmlands accommodated the most heritage trees while parks and gardens harbored the most species. This indicates that sparsely-populated rural community and scenic areas with open space are conducive to accommodating more urban heritage trees. The tier 3 heritage trees (100–299 years) accounted for about 80% of the total. Overall, most ancient trees in Jiangsu grew well. The species diversity index (H) of 13 cities was between 1.98 and 3.39. The H value among the 13 cities was largely affected by elevation range shift, while the tree density by GDP per capita. DCA showed that the ratio of unique species was >40%, and that dominant species presented little habitat preference. Therefore, species diversity among different cities are affected by climate and topography, as well as human factors. With the accelerating urbanization process, tree habitat, cultural tradition, and urban history should be taken into consideration for management and conservation of heritage trees in the future.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1451
Author(s):  
Antonio González-Hernández ◽  
Diego Nieto-Lugilde ◽  
Julio Peñas ◽  
Francisca Alba-Sánchez

Organisms modify their geographical distributions in response to changes in environmental conditions, or modify their affinity to such conditions, to avoid extinction. This study explored the altitudinal shift of Abies pinsapo Boiss. in the Baetic System. We analysed the potential distribution of the realised and reproductive niches of A. pinsapo populations in the Ronda Mountains (Southern Spain) by using species distribution models (SDMs) for two life stages within the current populations. Then, we calculated the species’ potential altitudinal shifts and identified the areas in which the processes of persistence and migration predominated. The realised and reproductive niches of A. pinsapo are different to one another, which may indicate a displacement in its altitudinal distribution owing to changes in the climatic conditions of the Ronda Mountains. The most unfavourable conditions for the species indicate a trailing edge (~110 m) at the lower limit of its distribution and a leading edge (~55 m) at the upper limit. Even though the differences in the altitudinal shifts between the trailing and leading edges will not cause the populations to become extinct in the short term, they may threaten their viability if the conditions that are producing the contraction at the lower limit persist in the long term.


2021 ◽  
Vol 13 (20) ◽  
pp. 11275
Author(s):  
Arayaselassie Abebe Semu ◽  
Tamrat Bekele ◽  
Ermias Lulekal ◽  
Paloma Cariñanos ◽  
Sileshi Nemomissa

Species tend to shift their suitable habitat both altitudinally and latitudinally under climate change. Range shift in plants brings about habitat contraction at rear edges, forcing leading edge populations to explore newly available suitable habitats. In order to detect these scenarios, modeling of the future geographical distribution of the species is widely used. Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. is endemic to Ethiopia and was assessed as vulnerable due to changes to its habitat by anthropogenic impacts. It occurs in upland wooded grassland from 2000–3100 m.a.s.l. The main objective of this study is to model the distribution of Vachellia negrii in Ethiopia by using Maxent under climate change. Nineteen bioclimatic variables were downloaded from an open source. Furthermore, topographic position index (tpi), solar radiation index (sri) and elevation were used. Two representative concentration pathways were selected (RCP 4.5 and RC P8.5) for the years 2050 and 2070 using the Community Climate System Model (CCSM 5). A correlation analysis of the bioclimatic variables has resulted in the retention of 10 bioclimatic variables for modeling. Forty-eight occurrence points were collected from herbarium specimens. The area under curve (AUC) is 0.94, indicating a high-performance level of the model. The distribution of the species is affected by elevation (26.4%), precipitation of the driest month (Bio 14, 21.7%), solar radiation (12.9%) and precipitation seasonality (Bio15, 12.2%). Whereas the RCP 8.5 has resulted in decrease of suitable areas of the species from the current 4,314,153.94 ha (3.80%) to 4,059,150.90 ha (3.58%) in 2050, this area will shrink to 3,555,828.71 ha in 2070 under the same scenario. As climate change severely affects the environment, highly suitable areas for the growth of the study subject will decrease by 758,325 ha. The study’s results shows that this vulnerable, endemic species is facing habitat contraction and requires interventions to ensure its long-term persistence.


Sign in / Sign up

Export Citation Format

Share Document