River Discharge
Recently Published Documents


TOTAL DOCUMENTS

1561
(FIVE YEARS 665)

H-INDEX

81
(FIVE YEARS 19)

2022 ◽  
Author(s):  
Qianqian Liu ◽  
Huijie Xue ◽  
Fei Chai ◽  
Zhengui Wang ◽  
Yi Chao ◽  
...  

Previous studies suggest importance of wind forcing on salt intrusion length and salt flux in river-dominated microtidal estuaries (with tidal range < 2 m). In this study, we investigate the role of wind forcing on salt intrusion in a mesotidal estuary, San Francisco Bay (SFB), with tidal ranges between 2 m and 4 m, through an open-source model of high transferability, the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM). Meanwhile, we investigate circulation and salinity variation of San Francisco Bay. The model’s performance in hydrodynamics at tidal, spring/neap and seasonal time scales is validated through model-observation comparisons. Through realistically forced and process-oriented experiments, we demonstrate that spring/neap tides can cause fortnightly variations in salinity and currents by modulating vertical mixing and stratification; and seasonal variability of circulation in North Bay is determined by change of river discharge and modified by winds, while in South Bay it is dominated by wind-driven flows. Furthermore, we revealed the role of wind on X2 (the distance from the Golden Gate Bridge to the 2-PSU isohaline at the bottom). The model results show that X2 is primarily influenced by river flow and proportional to river flow to the ¼ power. Meanwhile, wind plays a secondary role in modifying X2 by increasing X2 from 0 to 5 km during low discharge period, while spring/neap tide modulation on X2 is negligible but important for salt balance in sub-regions downstream of X2.


Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 253-266
Author(s):  
Anja TORKAR ◽  
Marjana ZAJC ◽  
Jure ATANACKOV ◽  
Andrej GOSAR ◽  
Mihael BRENČIČ

The Radovna River Valley is located in the north-western part of Slovenia in the Julian Alps, where there is an extensive intergranular aquifer whose depth to pre-Quaternary bedrock is unknown. Therefore, to obtain information about the depth of the valley and the geometry of the aquifer two geophysical methods were used in our study; ground penetrating radar (GPR) and seismic reflection method. The low-frequency GPR method has shown to be useful for determining the depth of the groundwater and the predominant groundwater recharge. Also, the high-resolution seismic method provided an insight about the morphology of the pre-Quaternary basement with the deepest point at 141 meters below surface. Measurements of hydrogeological parameters such as groundwater level and river discharge measurements were carried out in the study area. Both data analyses showed that groundwater level and river discharge are highly fluctuating and rapidly changing, indicating a well-permeable aquifer, implying that such an aquifer is extremely sensitive and vulnerable to extreme climate events. Both the geophysical methods and the hydrogeological information have provided important information about the morphology of the valley and the alluvial aquifer, as well as increasing the knowledge about the Radovna springs system, which will contribute very important information for future hydrogeological studies.


2021 ◽  
Author(s):  
Lorenzo Alfieri ◽  
Francesco Avanzi ◽  
Fabio Delogu ◽  
Simone Gabellani ◽  
Giulia Bruno ◽  
...  

Abstract. Satellite Earth observations (EO) are an accurate and reliable data source for atmospheric and environmental science. Their increasing spatial and temporal resolution, as well as the seamless availability over ungauged regions, make them appealing for hydrological modeling. This work shows recent advances in the use of high-resolution satellite-based Earth observation data in hydrological modelling. In a set of experiments, the distributed hydrological model Continuum is set up for the Po River Basin (Italy) and forced, in turn, by satellite precipitation and evaporation, while satellite-derived soil moisture and snow depths are ingested into the model structure through a data-assimilation scheme. Further, satellite-based estimates of precipitation, evaporation and river discharge are used for hydrological model calibration, and results are compared with those based on ground observations. Despite the high density of conventional ground measurements and the strong human influence in the focus region, all satellite products show strong potential for operational hydrological applications, with skillful estimates of river discharge throughout the model domain. Satellite-based evaporation and snow depths marginally improve (by 2 % and 4 %) the mean Kling-Gupta efficiency (KGE) at 27 river gauges, compared to a baseline simulation (KGEmean = 0.51) forced by high-quality conventional data. Precipitation has the largest impact on the model output, though the satellite dataset on average shows poorer skills compared to conventional data. Interestingly, a model calibration heavily relying on satellite data, as opposed to conventional data, provides a skillful reconstruction of river discharges, paving the way to fully satellite-driven hydrological applications.


2021 ◽  
Vol 13 (24) ◽  
pp. 13953
Author(s):  
Muhammad Saeed ◽  
Huan Li ◽  
Sami Ullah ◽  
Atta-ur Rahman ◽  
Amjad Ali ◽  
...  

Floods are the most frequent and destructive natural disasters causing damages to human lives and their properties every year around the world. Pakistan in general and the Peshawar Vale, in particular, is vulnerable to recurrent floods due to its unique physiography. Peshawar Vale is drained by River Kabul and its major tributaries namely, River Swat, River Jindi, River Kalpani, River Budhni and River Bara. Kabul River has a length of approximately 700 km, out of which 560 km is in Afghanistan and the rest falls in Pakistan. Looking at the physiography and prevailing flood characteristics, the development of a flood hazard model is required to provide feedback to decision-makers for the sustainability of the livelihoods of the inhabitants. Peshawar Vale is a flood-prone area, where recurrent flood events have caused damages to standing crops, agricultural land, sources of livelihood earnings and infrastructure. The objective of this study was to determine the effectiveness of the ANN algorithm in the determination of flood inundated areas. The ANN algorithm was implemented in C# for the prediction of inundated areas using nine flood causative factors, that is, drainage network, river discharge, rainfall, slope, flow accumulation, soil, surface geology, flood depth and land use. For the preparation of spatial geodatabases, thematic layers of the drainage network, river discharge, rainfall, slope, flow accumulation, soil, surface geology, flood depth and land use were generated in the GIS environment. A Neural Network of nine, six and one neurons for the first, second and output layers, respectively, were designed and subsequently developed. The output and the resultant product of the Neural Network approach include flood hazard mapping and zonation of the study area. Parallel to this, the performance of the model was evaluated using Root Mean Square Error (RMSE) and Correlation coefficient (R2). This study has further highlighted the applicability and capability of the ANN in flood hazard mapping and zonation. The analysis revealed that the proposed model is an effective and viable approach for flood hazard analysis and zonation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander Osadchiev ◽  
Olga Konovalova ◽  
Alexandra Gordey

The Gulf of Ob is among the largest estuaries in the World Ocean in terms of area, watershed basin, and freshwater discharge. In this work, we describe the roles of river discharge and wind forcing on the water exchange between the Gulf of Ob and the Kara Sea during ice-free seasons. This work is based on the extensive in situ measurements performed during 10 oceanographic surveys in 2007–2019. Due to large river runoff (∼530 km3 annually) and low tidal forcing (&lt;0.5 m/s), the estuarine processes in the Gulf of Ob during the ice-free season are generally governed by gravitational circulation. Local wind forcing significantly affects general estuarine circulation and mixing only in rare cases of strong winds (∼10 m/s). On the other hand, remote wind forcing over the central part of the Kara Sea regularly intensifies estuarine—sea water exchange. Eastern winds in the central part of the Kara Sea induce upwelling in the area adjacent to the Gulf of Ob, which increases the barotropic pressure gradient between the gulf and the open sea. As a result, intense and distant (120–170 km) inflows of saline water to the gulf occur as compared to the average conditions (50–70 km). Remote wind forcing has a far stronger impact on saltwater intrusion into the Gulf of Ob than the highly variable river discharge rate. In particular, saltwater reaches the shallow central part of the gulf only during upwelling-induced intense inflows. In the other periods (even under low discharge conditions), fresh river water occupies this area from surface to bottom. The upwelling-induced intense inflows occur on average during a quarter of days (July to October) when the gulf is free of ice. They substantially increase the productivity of phytoplankton communities in the gulf and modify the taxa ratio toward the increase of brackish water species and the decrease of freshwater species.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 81
Author(s):  
Francisco Javier Sanz-Ronda ◽  
Francisco Javier Bravo-Córdoba ◽  
Ana García-Vega ◽  
Jorge Valbuena-Castro ◽  
Andrés Martínez-de-Azagra ◽  
...  

The monitoring of river discharge is vital for the correct management of water resources. Flat-V gauging weirs are facilities used worldwide for measuring discharge. These structures consist of a small weir with a triangular cross-section and a flat “V”-shaped notch. Their extensive use is a consequence of their utility in the measurement of both low and high flow conditions. However, depending on their size, local morphology and river discharge can act as full or partial hydraulic barriers to fish migration. To address this concern, the present work studies fish passage performance over flat-V weirs considering their hydraulic performance. For this, radio-tracking and video-monitoring observations were combined with computational fluid dynamics (CFD) models in two flat-V weirs, using Iberian barbel (Luciobarbus bocagei) as the target species. Results showed that fish passage is conditioned by both hydraulic and behavioral processes, providing evidence for scenarios in which flat-V weirs may act as full or partial barriers to upstream movements. For the studied flat-V weirs, a discharge range of 0.27–8 m3/s, with a water drop difference between upstream and downstream water levels lower than 0.7 m and a depth downstream of the weir of higher than 0.3 m can be considered an effective passage situation for barbels. These findings are of interest for quantifying flat-V weir impacts, for engineering applications and for establishing managing or retrofitting actions when required.


2021 ◽  
Vol 25 (12) ◽  
pp. 6261-6281
Author(s):  
Maxime Gillet ◽  
Corinne Le Gal La Salle ◽  
Pierre Alain Ayral ◽  
Somar Khaska ◽  
Philippe Martin ◽  
...  

Abstract. The increasing severity of hydrological droughts in the Mediterranean basin related to climate change raises the need to understand the processes sustaining low flow. The purpose of this paper is to evaluate simple mixing model approaches, first to identify and then to quantify streamflow contribution during low-water periods. An approach based on the coupling of geochemical data with hydrological data allows the quantification of flow contributions. In addition, monitoring during the low-water period was used to investigate the drying-up trajectory of each geological reservoir individually. Data were collected during the summers of 2018 and 2019 on a Mediterranean river (Gardon de Sainte-Croix). The identification of the end-members was performed after the identification of a groundwater geochemical signature clustered according to the geological nature of the reservoir. Two complementary methods validate further the characterisation: rock-leaching experiments and unsupervised classification (k-means). The use of the end-member mixture analysis (EMMA) coupled with a generalised likelihood uncertainty estimate (GLUE) (G-EMMA) mixing model coupled with hydrological monitoring of the main river discharge rate highlights major disparities in the contribution of the geological units, showing a reservoir with a minor contribution in high flow becoming preponderant during the low-flow period. This finding was revealed to be of the utmost importance for the management of water resources during the dry period.


2021 ◽  

<p>Field investigations were conducted to study the seasonal variation of hydrodynamics and sediment transport in Indus River Estuary (IRE), Pakistan. The data of water levels, currents, salinity, and suspended sediment concentration (SSC) were collected hourly covering both wet and dry seasons. Tidal amplitudes were higher near the mouth than those at the middle and upper estuary. The ebb phase lasted longer than that of the flood during the wet season. The asymmetric tidal pattern with higher ebb velocity was observed during the wet season. A slight difference in current velocity was found during the dry season. The flood currents were higher at middle estuary than those in wet season. During the wet season, salinity variation within a tidal cycle slightly increased from the upper estuary to the mouth. Salinity was substantially higher during the dry season than the wet season at all three stations, with the absence of the flood-ebb variation, showing a strong saltwater intrusion. The SSC data revealed that the sediments were mainly brought into the estuary by freshwater discharge during the wet season. Sediment re-suspension process persists during the dry season, due to the tidal currents. A stronger saltwater intrusion occurred in the dry season due to weak river discharge. An estuarine turbidity maximum zone was formed near station-2 due to the combined effects of tides, river discharge and saltwater intrusion. Overall, field observations have shown a significant spatial and temporal variation in flood/ebb and wet/dry seasons for hydrodynamics and sediment transport in IRE.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Dongfeng Xie ◽  
Zheng Bing Wang

Despite the increasing number of studies on the river-tide interactions in estuaries, less attention has been paid to the role of seasonal morphological changes on tidal regime. This study analyzes the seasonal interplay of river and tide in the Qiantang Estuary, China, particularly focusing on the influences of the active morphological evolution induced by the seasonal variation of river discharge. The study is based on the high and low water levels at three representative stations along the estuary and daily river discharge through 2015, an intermediate flow year in which a typical river flood occurred, as well as the bathymetric data measured in April, July and November, 2015. The results show strong seasonal variations of the water level in addition to the spring-neap variation. These variations are obviously due to the interaction between river discharge and tide but can only be fully explained by including the effect of morphological changes. Two types of the influences of the variation of the river discharge on the tidal dynamics in the estuary can be distinguished: one is immediately induced by the high flow and the other continues for a much longer period because of the bed erosion and the following bed recovery. Tidal range in the upper reach can be doubled after the flood because of bed erosion and then decrease under normal discharge periods due to sediment accumulation. Over a relatively short term such as a month or a spring-neap tidal cycle, there exist good relationships between the tidal range, tidal amplification in the upper reach and the tidal range at the mouth, and between the hydraulic head over the upper and lower reaches. Such relationships are unclear if all data over the whole year are considered together, mainly because of the active morphological evolution.


Sign in / Sign up

Export Citation Format

Share Document