scholarly journals Gamow-Teller transitions of neutron-rich N = 82, 81 nuclei by shell-model calculations

Author(s):  
Noritaka Shimizu ◽  
Tomoaki Togashi ◽  
Yutaka Utsuno

Abstract β-decay half-lives of neutron-rich nuclei around N = 82 are key data to understand the r-process nucleosynthesis. We performed large-scale shell-model calculations in this region using a newly constructed shell-model Hamiltonian, and successfully described the low-lying spectra and half-lives of neutron-rich N = 82 and N = 81 isotones with Z = 42 − 49 in a unified way. We found that their Gamow-Teller strength distributions have a peak in the low-excitation energies, which significantly contributes to the half-lives. This peak, dominated by ν0g7/2 → π0g9/2 transitions, is enhanced on the proton deficient side because the Pauli-blocking effect caused by occupying the valence proton 0g9/2 orbit is weakened.

2018 ◽  
Vol 194 ◽  
pp. 01004
Author(s):  
Sevdalina Dimitrova ◽  
Nicola Lo Iudice

This paper presents the results of a large-scale shell model calculations of the yrast spectrum of 140Xe. We extend the previous calculations confined to low-lying angular momenta to high-spin states apply- ing the same importance sampling iterative matrix diagonalization algorithm. Excitation energies and transi- tion probabilities are obtained by using an effective nucleon-nucleon interaction derived from the CD-Bonn nucleon-nucleon potential. A satisfactory agreement with the experimental data and the previous results for low lying states is achieved.


2013 ◽  
Vol 445 ◽  
pp. 012028 ◽  
Author(s):  
Y Tsunoda ◽  
T Otsuka ◽  
N Shimizu ◽  
M Honma ◽  
Y Utsuno

2021 ◽  
Vol 66 (4) ◽  
pp. 293
Author(s):  
A.A. Al-Sammarraie ◽  
F.A. Ahmed ◽  
A.A. Okhunov

The negative-parity states of 24Mg nucleus are investigated within the shell model. We are based on the calculations of energy levels, total squared form factors, and transition probability using the p-sd-pf (PSDPF) Hamiltonian in a large model space (0 + 1) hW. The comparison between the experimental and theoretical states showed a good agreement within a truncated model space. The PSDPF-based calculations successfully reproduced the data on the total squared form factors and transition probabilities of the negative-parity states in 24Mg nucleus. These quantities depend on the one-body density matrix elements that are obtained from the PSDPF Hamiltonian. The wave functions of radial one-particle matrix elements calculated with the harmonic-oscillator potential are suitable to predict experimental data by changing the center-of-mass corrections.


2016 ◽  
Vol 93 (6) ◽  
Author(s):  
E. Teruya ◽  
K. Higashiyama ◽  
N. Yoshinaga

2007 ◽  
Vol 16 (02) ◽  
pp. 552-560 ◽  
Author(s):  
E. CAURIER ◽  
F. NOWACKI ◽  
A. POVES

The determination of accurate nuclear matrix elements for ββ decay processes is a challenge for nuclear theory and can have a strong impact in neutrino physics. Large Scale Shell Model (LSSM) calculations are among the best tools for such determination and recent developments have allowed to extend its application domains. In particular, systematic studies of nuclear matrix elements calculations have been now undertaken in this framework for most of the ββ emitters. These calculations are crucial in the determination of the most favorable emitters in the forthcoming generation of ββ experiments. The present paper focuses on the recent advances and remaining difficulties of shell model calculations for the neutrinoless mode. Stability and predictive power of the results will be discussed.


Sign in / Sign up

Export Citation Format

Share Document