isospin symmetry
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 31)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Eric Blanquier

The behavior of the mesons and diquarks is studied at finite temperatures, chemical potentials and densities, notably when the color superconductivity is taken into account. The Nambu and Jona-Lasinio model complemented by a Polyakov loop (PNJL description) has been adapted in order to model them in this regime. This paper focuses on the scalar and pseudoscalar mesons and diquarks, in a three-flavor and three-color description, with the isospin symmetry and at zero strange density. An objective of this work is to underline the modifications carried out by the color superconducting regime on the used equations and on the obtained results. It has been observed that the two-flavor color-superconducting (2SC) phase affects the masses and the coupling constants of the mesons and diquarks in a non-negligible way. This observation is particularly true at high densities and low temperatures for the pions, [Formula: see text] and the diquarks [Formula: see text] whose color is [Formula: see text]. This reveals that the inclusion of the color superconductivity in the modeling is relevant to describe the mesons and diquarks near the first-order chiral phase transition.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 382
Author(s):  
Armen Sedrakian ◽  
Arus Harutyunyan

Finite-temperature equation of state (EoS) and the composition of dense nuclear and hypernuclear matter under conditions characteristic of neutron star binary merger remnants and supernovas are discussed. We consider both neutrino free-streaming and trapped regimes which are separated by a temperature of a few MeV. The formalism is based on covariant density functional (CDF) theory for the full baryon octet with density-dependent couplings, suitably adjusted in the hypernuclear sector. The softening of the EoS with the introduction of the hyperons is quantified under various conditions of lepton fractions and temperatures. We find that Λ, Ξ−, and Ξ0 hyperons appear in the given order with a sharp density increase at zero temperature at the threshold being replaced by an extended increment over a wide density range at high temperatures. The Λ hyperon survives in the deep subnuclear regime. The triplet of Σs is suppressed in cold hypernuclear matter up to around seven times the nuclear saturation density, but appears in significant fractions at higher temperatures, T≥20 MeV, in both supernova and merger remnant matter. We point out that a special isospin degeneracy point exists where the baryon abundances within each of the three isospin multiplets are equal to each other as a result of (approximate) isospin symmetry. At that point, the charge chemical potential of the system vanishes. We find that under the merger remnant conditions, the fractions of electron and μ-on neutrinos are close and are about 1%, whereas in the supernova case, we only find a significant fraction (∼10%) of electron neutrinos, given that in this case, the μ-on lepton number is zero.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Waqas ◽  
G. X. Peng ◽  
Fu-Hu Liu ◽  
Z. Wazir

AbstractThe transverse momentum spectra of light nuclei (deuteron, triton and helion) produced in various centrality intervals in Gold–Gold (Au–Au), Lead–Lead (Pb–Pb) and proton–Lead (p–Pb) collisions, as well as in inelastic (INEL) proton–proton (p–p) collisions are analyzed by the blast wave model with Boltzmann Gibbs statistics. The model results are nearly in agreement with the experimental data measured by STAR and ALICE Collaborations in special transverse momentum ranges. We extracted the bulk properties in terms of kinetic freezeout temperature, transverse flow velocity and freezeout volume. It is observed that deuteron and anti-deuteron freezeout later than triton and helion as well as their anti-particles due to its smaller mass, while helion and triton, and anti-helion and anti-triton freezeout at the same time due to isospin symmetry at higher energies. It is also observed that light nuclei freezeout earlier than their anti-nuclei due to the large coalescence of nucleons for light nuclei compared to their anti-nuclei. The kinetic freezeout temperature, transverse flow velocity and kinetic freezeout volume decrease from central to peripheral collisions. Furthermore, the transverse flow velocity depends on mass of the particle which decreases with increasing the mass of the particle.


2021 ◽  
Vol 821 ◽  
pp. 136603
Author(s):  
D. Tonev ◽  
G. de Angelis ◽  
I. Deloncle ◽  
N. Goutev ◽  
G. De Gregorio ◽  
...  

2021 ◽  
Vol 104 (2) ◽  
Author(s):  
M. M. Giles ◽  
B. S. Nara Singh ◽  
L. Barber ◽  
D. M. Cullen ◽  
M. J. Mallaburn ◽  
...  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
M. S. Martin ◽  
S. R. Stroberg ◽  
J. D. Holt ◽  
K. G. Leach

2021 ◽  
Vol 57 (6) ◽  
Author(s):  
C. Mullen ◽  
S. Gardner ◽  
D. I. Glazier ◽  
S. J. D. Kay ◽  
K. Livingston ◽  
...  

AbstractThe quasifree $$\overrightarrow{\gamma } d\rightarrow \pi ^0n(p)$$ γ → d → π 0 n ( p ) photon beam asymmetry, $$\varSigma $$ Σ , has been measured at photon energies, $$E_\gamma $$ E γ , from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49$$^\circ $$ ∘ to 148$$^\circ $$ ∘ . In this kinematic region, polarization observables are sensitive to contributions from the $$\varDelta (1232)$$ Δ ( 1232 ) and N(1440) resonances. The extracted values of $$\varSigma $$ Σ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID and Bonn–Gatchina analyses; while a revised SAID fit, including the new $$\varSigma $$ Σ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $$\pi ^0n$$ π 0 n photoproduction observables, based on fits to published data in the channels $$\pi ^0p$$ π 0 p , $$\pi ^+n$$ π + n and $$\pi ^-p$$ π - p .


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Xiao-Gang He ◽  
Xiao-Dong Ma

Abstract In this paper we systematically consider the baryon (B) and lepton (L) number violating dinucleon to dilepton decays (pp → ℓ+ℓ′+, pn → $$ {\mathrm{\ell}}^{+}\overline{\nu}^{\prime } $$ ℓ + ν ¯ ′ , nn → $$ \overline{\nu}\overline{\nu}^{\prime } $$ ν ¯ ν ¯ ′ ) with ∆B = ∆L = −2 in the framework of effective field theory. We start by constructing a basis of dimension-12 (dim-12) operators mediating such processes in the low energy effective field theory (LEFT) below the electroweak scale. Then we consider their standard model effective field theory (SMEFT) completions upwards and their chiral realizations in baryon chiral perturbation theory (BχPT) downwards. We work to the first nontrivial orders in each effective field theory, collect along the way the matching conditions, and express the decay rates in terms of the Wilson coefficients associated with the dim-12 operators in the SMEFT and the low energy constants pertinent to BχPT. We find the current experimental limits push the associated new physics scale larger than 1 − 3 TeV, which is still accessible to the future collider searches. Through weak isospin symmetry, we find the current experimental limits on the partial lifetime of transitions pp → ℓ+ℓ′+, pn → $$ {\mathrm{\ell}}^{+}\overline{\nu}^{\prime } $$ ℓ + ν ¯ ′ imply stronger limits on nn → $$ \overline{\nu}\overline{\nu}^{\prime } $$ ν ¯ ν ¯ ′ than their existing lower bounds, which are improved by 2−3 orders of magnitude. Furthermore, assuming charged mode transitions are also dominantly generated by the similar dim-12 SMEFT interactions, the experimental limits on pp → e+e+, e+μ+, μ+μ+ lead to stronger limits on pn → $$ {\mathrm{\ell}}_{\alpha}^{+}{\overline{\nu}}_{\beta } $$ ℓ α + ν ¯ β with α, β = e, μ than their existing bounds. Conversely, the same assumptions help us to set a lower bound on the lifetime of the experimentally unsearched mode pp → e+τ+ from that of pn → $$ {e}^{+}{\overline{\nu}}_{\tau } $$ e + ν ¯ τ , i.e., $$ {\Gamma}_{pp\to {e}^{+}{\tau}^{+}}^{-1}\gtrsim 2\times {10}^{34} $$ Γ pp → e + τ + − 1 ≳ 2 × 10 34 yr.


Sign in / Sign up

Export Citation Format

Share Document